X-Git-Url: https://codewiz.org/gitweb?a=blobdiff_plain;f=bertos%2Fcfg%2Fmacros.h;h=6c9b63ef0001b0877a0086a162f83b312cc7f10d;hb=84d7581d4e99d656db0064086ecee8d9f30aeba3;hp=17f9c6768d92db83972074b7ed26ba479f1c5451;hpb=620a5af8d34e5e7e9fc902eb46537faa479411f4;p=bertos.git diff --git a/bertos/cfg/macros.h b/bertos/cfg/macros.h index 17f9c676..6c9b63ef 100644 --- a/bertos/cfg/macros.h +++ b/bertos/cfg/macros.h @@ -196,6 +196,42 @@ */ #define DIV_ROUNDUP(dividend, divisor) (((dividend) + (divisor) - 1) / (divisor)) + +/** + * Perform a multiply between the integer \a a and the float constant \a f. + * + * This macro can be used in order to avoid floating point arithmetics + * in expressions like this: + * \code + * int a, b; + * a = b * 0.5579652750; + * \endcode + * + * This macro rounds the floating point constant to a fraction, + * usign (2 ^ prec) as the denominator. + * For instance, with prec = 8, the constant 0.5579652750 will be rounded to: + * (143 / 256) = 0.55859375 + * So, the former code will be transformed to: + * \code + * a = b * 143 / 256; + * \endcode + * + * Since the denominator is a power of 2, we rely on the compiler to optimize + * this to a right shift. + * So, when you have to multiply an integer by a float constant, this macro + * will not use the floating point arithmentics. + * The operation will be converted to a mul + shift, with a huge performance boost. + * + * \note \a f MUST be a constant in order gain performance benefits. + * + * \param a integer you want to multiply + * \param f floating point constant which you want to multply with \a a + * \param prec conversion precision, ranges from 1 to the number of bits in a long. + * The higher, the better the approximation of the float constant will be. + */ +#define INT_MULT(a, f, prec) (((a) * (long)((f) * (1 << (prec)) + 0.5)) >> (prec)) + + /** Round up \a x to an even multiple of the 2's power \a pad. */ #define ROUND_UP2(x, pad) (((x) + ((pad) - 1)) & ~((pad) - 1)) @@ -370,6 +406,41 @@ INLINE bool is_aligned(const void *addr, size_t size) return ((size_t)addr & (size - 1)) == 0; } +/** + * Convert one 32bit bcd numbert to int. + */ +#define BCD_TO_INT_32BIT(bcd) \ + ((uint32_t )((bcd) & 0xf) * 1 + \ + (((bcd) >> 4) & 0xf) * 10 + \ + (((bcd) >> 8) & 0xf) * 100 + \ + (((bcd) >> 12) & 0xf) * 1000 + \ + (((bcd) >> 16) & 0xf) * 10000 + \ + (((bcd) >> 20) & 0xf) * 100000 + \ + (((bcd) >> 24) & 0xf) * 1000000 + \ + (((bcd) >> 28) & 0xf) * 10000000) \ + +/** + * Extract chunk of bit from gived array (uint32_t type). + * \param resp array of bit 32bit aligned + * \param start bit position in array + * \param size of bit chuck from start + * \return uint32_t chunk value. + */ +#define UNSTUFF_BITS(resp, start, size) \ + ({ \ + const uint32_t __size = size; \ + const uint32_t __mask = (__size < 32 ? 1 << __size : 0) - 1; \ + const uint32_t __off = 3 - ((start) / 32); \ + const uint32_t __shft = (start) & 31; \ + uint32_t __res; \ + \ + __res = resp[__off] >> __shft; \ + if (__size + __shft > 32) \ + __res |= resp[__off-1] << ((32 - __shft) % 32); \ + __res & __mask; \ + }) + + /** \} */ //defgroup macros #endif /* MACROS_H */