X-Git-Url: https://codewiz.org/gitweb?a=blobdiff_plain;f=drv%2Fser_avr.c;h=a4328f41b8552b60af93b6919b098484969672d3;hb=HEAD;hp=2e94c2192520bf912cd9f3fb4c353d7f61495964;hpb=7197a9a2071752d47d0822152ecc39420b8f70b5;p=bertos.git diff --git a/drv/ser_avr.c b/drv/ser_avr.c deleted file mode 100755 index 2e94c219..00000000 --- a/drv/ser_avr.c +++ /dev/null @@ -1,613 +0,0 @@ -/*! - * \file - * - * - * \brief AVR UART and SPI I/O driver - * - * Rationale for project_ks hardware. - * - * The serial 0 on the board_kf board is used to communicate with the - * smart card, which has the TX and RX lines connected together. To - * allow the smart card to drive the RX line of the CPU the CPU TX has - * to be in a high impedance state. - * Whenever a transmission is done and there is nothing more to send - * the transmitter is turn off. The output pin is held in input with - * pull-up enabled, to avoid capturing noise from the nearby RX line. - * - * The line on the KBus port must keep sending data, even when - * there is nothing to transmit, because a burst data transfer - * generates noise on the audio channels. - * This is accomplished using the multiprocessor mode of the - * ATmega64/128 serial. - * - * The receiver keeps the MPCM bit always on. When useful data - * is trasmitted the address bit is set. The receiver hardware - * consider the frame as address info and receive it. - * When useless fill bytes are sent the address bit is cleared - * and the receiver will ignore them, avoiding useless triggering - * of RXC interrupt. - * - * \version $Id$ - * \author Bernardo Innocenti - * \author Stefano Fedrigo - */ - -/* - * $Log$ - * Revision 1.8 2004/07/29 22:57:09 bernie - * Several tweaks to reduce code size on ATmega8. - * - * Revision 1.7 2004/07/18 21:54:23 bernie - * Add ATmega8 support. - * - * Revision 1.5 2004/06/27 15:25:40 aleph - * Add missing callbacks for SPI; - * Change UNUSED() macro to new version with two args; - * Use TX line filling only on the correct KBUS serial port; - * Fix nasty IRQ disabling bug in recv complete hander for port 1. - * - * Revision 1.4 2004/06/03 11:27:09 bernie - * Add dual-license information. - * - * Revision 1.3 2004/06/02 21:35:24 aleph - * Serial enhancements: interruptible receive handler and 8 bit serial status for AVR; remove volatile attribute to FIFOBuffer, useless for new fifobuf routens - * - * Revision 1.2 2004/05/23 18:21:53 bernie - * Trim CVS logs and cleanup header info. - * - */ - -#include "ser.h" -#include "ser_p.h" -#include "kdebug.h" -#include "config.h" -#include "hw.h" -#include - -#include - - -/* Hardware handshake (RTS/CTS). */ -#ifndef RTS_ON -#define RTS_ON do {} while (0) -#endif -#ifndef RTS_OFF -#define RTS_OFF do {} while (0) -#endif -#ifndef IS_CTS_ON -#define IS_CTS_ON true -#endif - -/* External 485 transceiver on UART0 (to be overridden in "hw.h"). */ -#ifndef SER_UART0_485_INIT -#define SER_UART0_485_INIT do {} while (0) -#endif -#ifndef SER_UART0_485_TX -#define SER_UART0_485_TX do {} while (0) -#endif - - -/* SPI port and pin configuration */ -#define SPI_PORT PORTB -#define SPI_DDR DDRB -#define SPI_SCK_BIT PORTB1 -#define SPI_MOSI_BIT PORTB2 -#define SPI_MISO_BIT PORTB3 - - -#if defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__) - #define AVR_HAS_UART1 1 -#elif defined(__AVR_ATmega8__) - #define AVR_HAS_UART1 0 - #define UCSR0A UCSRA - #define UCSR0B UCSRB - #define UCSR0C UCSRC - #define UDR0 UDR - #define UBRR0L UBRRL - #define UBRR0H UBRRH - #define SIG_UART0_DATA SIG_UART_DATA - #define SIG_UART0_RECV SIG_UART_RECV -#elif defined(__AVR_ATmega103__) - #define AVR_HAS_UART1 0 - #define UCSR0B UCR - #define UDR0 UDR - #define UCSR0A USR - #define UBRR0L UBRR - #define SIG_UART0_DATA SIG_UART_DATA - #define SIG_UART0_RECV SIG_UART_RECV -#else - #error Unknown architecture -#endif - - -/* Transmission fill byte */ -#define SER_FILL_BYTE 0xAA - - -/* From the high-level serial driver */ -extern struct Serial ser_handles[SER_CNT]; - -/* - * These are to trick GCC into *not* using - * absolute addressing mode when accessing - * ser_handles, which is very expensive. - * - * Accessing through these pointers generates - * much shorter (and hopefully faster) code. - */ -struct Serial *ser_uart0 = &ser_handles[SER_UART0]; -#if AVR_HAS_UART1 -struct Serial *ser_uart1 = &ser_handles[SER_UART1]; -#endif -struct Serial *ser_spi = &ser_handles[SER_SPI]; - - -static void uart0_enabletxirq(UNUSED(struct SerialHardware *, ctx)) -{ -#if CONFIG_SER_TXFILL && (CONFIG_KBUS_PORT == 0) - UCSR0B = BV(RXCIE) | BV(UDRIE) | BV(RXEN) | BV(TXEN) | BV(UCSZ2); -#elif defined(SER_UART0_485_TX) - /* Disable receiver, enable transmitter, switch 485 transceiver. */ - UCSR0B = BV(UDRIE) | BV(TXEN); - SER_UART0_485_TX; -#else - UCSR0B = BV(RXCIE) | BV(UDRIE) | BV(RXEN) | BV(TXEN); -#endif -} - -static void uart0_init(UNUSED(struct SerialHardware *, _hw), UNUSED(struct Serial *, ser)) -{ -#if defined(ARCH_BOARD_KS) && (ARCH & ARCH_BOARD_KS) - /* Set TX port as input with pull-up enabled to avoid - noise on the remote RX when TX is disabled. */ - cpuflags_t flags; - DISABLE_IRQSAVE(flags); - DDRE &= ~BV(PORTE1); - PORTE |= BV(PORTE1); - ENABLE_IRQRESTORE(flags); -#endif /* ARCH_BOARD_KS */ - -#if CONFIG_SER_TXFILL && (CONFIG_KBUS_PORT == 0) - /*! - * Set multiprocessor mode and 9 bit data frame. - * The receiver keep MPCM bit always on. When useful data - * is trasmitted the ninth bit is set and the receiver receive - * the frame. - * When useless fill bytes are sent the ninth bit is cleared - * and the receiver will ignore them. - */ - UCSR0A = BV(MPCM); - UCSR0B = BV(RXCIE) | BV(RXEN) | BV(UCSZ2); -#else - UCSR0B = BV(RXCIE) | BV(RXEN); -#endif - - SER_UART0_485_INIT; - RTS_ON; -} - -static void uart0_cleanup(UNUSED(struct SerialHardware *, _hw)) -{ - UCSR0B = 0; -} - -static void uart0_setbaudrate(UNUSED(struct SerialHardware *, _hw), unsigned long rate) -{ - /* Compute baud-rate period */ - uint16_t period = (((CLOCK_FREQ / 16UL) + (rate / 2)) / rate) - 1; - DB(kprintf("uart0_setbaudrate(rate=%lu): period=%d\n", rate, period);) - -#ifndef __AVR_ATmega103__ - UBRR0H = (period) >> 8; -#endif - UBRR0L = (period); -} - -static void uart0_setparity(UNUSED(struct SerialHardware *, _hw), int parity) -{ -#ifndef __AVR_ATmega103__ - UCSR0C |= (parity) << UPM0; -#endif -} - -#if AVR_HAS_UART1 - -static void uart1_enabletxirq(UNUSED(struct SerialHardware *, _hw)) -{ -#if CONFIG_SER_TXFILL && (CONFIG_KBUS_PORT == 1) - UCSR1B = BV(RXCIE) | BV(UDRIE) | BV(RXEN) | BV(TXEN) | BV(UCSZ2); -#else - UCSR1B = BV(RXCIE) | BV(UDRIE) | BV(RXEN) | BV(TXEN); -#endif -} - -static void uart1_init(UNUSED(struct SerialHardware *, _hw), UNUSED(struct Serial *, ser)) -{ - /* Set TX port as input with pull-up enabled to avoid - * noise on the remote RX when TX is disabled */ - cpuflags_t flags; - DISABLE_IRQSAVE(flags); - DDRD &= ~BV(PORTD3); - PORTD |= BV(PORTD3); - ENABLE_IRQRESTORE(flags); - -#if CONFIG_SER_TXFILL && (CONFIG_KBUS_PORT == 1) - /*! See comment in uart0_init() */ - UCSR1A = BV(MPCM); - UCSR1B = BV(RXCIE) | BV(RXEN) | BV(UCSZ2); -#else - UCSR1B = BV(RXCIE) | BV(RXEN); -#endif - - RTS_ON; -} - -static void uart1_cleanup(UNUSED(struct SerialHardware *, _hw)) -{ - UCSR1B = 0; -} - -static void uart1_setbaudrate(UNUSED(struct SerialHardware *, _hw), unsigned long rate) -{ - /* Compute baud-rate period */ - uint16_t period = (((CLOCK_FREQ / 16UL) + (rate / 2)) / rate) - 1; - DB(kprintf("uart1_setbaudrate(rate=%ld): period=%d\n", rate, period);) - - UBRR1H = (period) >> 8; - UBRR1L = (period); -} - -static void uart1_setparity(UNUSED(struct SerialHardware *, _hw), int parity) -{ - UCSR1C |= (parity) << UPM0; -} - -#endif // AVR_HAS_UART1 - - -static void spi_init(UNUSED(struct SerialHardware *, _hw), UNUSED(struct Serial *, ser)) -{ - /* - * Set MOSI and SCK ports out, MISO in. - * - * The ATmega64/128 datasheet explicitly states that the input/output - * state of the SPI pins is not significant, as when the SPI is - * active the I/O port are overrided. - * This is *blatantly FALSE*. - * - * Moreover, the MISO pin on the board_kc *must* be in high impedance - * state even when the SPI is off, because the line is wired together - * with the KBus serial RX, and the transmitter of the slave boards - * would be unable to drive the line. - */ - SPI_DDR |= BV(SPI_MOSI_BIT) | BV(SPI_SCK_BIT); - SPI_DDR &= ~BV(SPI_MISO_BIT); - /* Enable SPI, IRQ on, Master, CPU_CLOCK/16 */ - SPCR = BV(SPE) | BV(SPIE) | BV(MSTR) | BV(SPR0); -} - -static void spi_cleanup(UNUSED(struct SerialHardware *, _hw)) -{ - SPCR = 0; - /* Set all pins as inputs */ - SPI_DDR &= ~(BV(SPI_MISO_BIT) | BV(SPI_MOSI_BIT) | BV(SPI_SCK_BIT)); -} - -static void spi_setbaudrate(UNUSED(struct SerialHardware *, _hw), UNUSED(unsigned long, rate)) -{ - // nop -} - -static void spi_setparity(UNUSED(struct SerialHardware *, _hw), UNUSED(int, parity)) -{ - // nop -} - - -#if CONFIG_SER_HWHANDSHAKE - -//! This interrupt is triggered when the CTS line goes high -SIGNAL(SIG_CTS) -{ - // Re-enable UDR empty interrupt and TX, then disable CTS interrupt - UCSR0B = BV(RXCIE) | BV(UDRIE) | BV(RXEN) | BV(TXEN); - cbi(EIMSK, EIMSKB_CTS); -} - -#endif // CONFIG_SER_HWHANDSHAKE - - -/*! - * Serial 0 TX interrupt handler - */ -SIGNAL(SIG_UART0_DATA) -{ - struct FIFOBuffer * const txfifo = &ser_uart0->txfifo; - - if (fifo_isempty(txfifo)) - { -#if CONFIG_SER_TXFILL && (CONFIG_KBUS_PORT == 0) - /* - * To avoid audio interference: always transmit useless char. - * Send the byte with the ninth bit cleared, the receiver in MCPM mode - * will ignore it. - */ - UCSR0B &= ~BV(TXB8); - UDR0 = SER_FILL_BYTE; -#elif defined(SER_UART0_485_RX) - /* - * - Disable UDR empty interrupt - * - Disable the transmitter (the in-progress transfer will complete) - * - Enable the transmit complete interrupt for the 485 tranceiver. - */ - UCSR0B = BV(TXCIE); -#else - /* Disable UDR empty interrupt and transmitter */ - UCSR0B = BV(RXCIE) | BV(RXEN); -#endif - } -#if CONFIG_SER_HWHANDSHAKE - else if (!IS_CTS_ON) - { - // Disable rx interrupt and tx, enable CTS interrupt - UCSR0B = BV(RXCIE) | BV(RXEN); - sbi(EIFR, EIMSKB_CTS); - sbi(EIMSK, EIMSKB_CTS); - } -#endif // CONFIG_SER_HWHANDSHAKE - else - { -#if CONFIG_SER_TXFILL && (CONFIG_KBUS_PORT == 0) - /* Send with ninth bit set. Receiver in MCPM mode will receive it */ - UCSR0B |= BV(TXB8); -#endif - UDR0 = fifo_pop(txfifo); - } -} - -#ifdef SER_UART0_485_RX -/*! - * Serial port 0 TX complete interrupt handler. - * - * This IRQ is usually disabled. The UDR-empty interrupt - * enables it when there's no more data to transmit. - * We need to wait until the last character has been - * transmitted before switching the 485 transceiver to - * receive mode. - */ -SIGNAL(SIG_UART0_TRANS) -{ - /* Turn the 485 tranceiver into receive mode. */ - SER_UART0_485_RX; - - /* Enable UART receiver and receive interrupt. */ - UCSR0B = BV(RXCIE) | BV(RXEN); -} -#endif /* SER_UART0_485_RX */ - - -#if AVR_HAS_UART1 - -/*! - * Serial 1 TX interrupt handler - */ -SIGNAL(SIG_UART1_DATA) -{ - struct FIFOBuffer * const txfifo = &ser_uart1->txfifo; - - if (fifo_isempty(txfifo)) - { -#if CONFIG_SER_TXFILL && (CONFIG_KBUS_PORT == 1) - /* - * To avoid audio interference: always transmit useless char. - * Send the byte with the ninth bit cleared, the receiver in MCPM mode - * will ignore it. - */ - UCSR1B &= ~BV(TXB8); - UDR1 = SER_FILL_BYTE; -#else - /* Disable UDR empty interrupt and transmitter */ - UCSR1B = BV(RXCIE) | BV(RXEN); -#endif - } -#if CONFIG_SER_HWHANDSHAKE - else if (IS_CTS_OFF) - { - // Disable rx interrupt and tx, enable CTS interrupt - UCSR1B = BV(RXCIE) | BV(RXEN); - sbi(EIFR, EIMSKB_CTS); - sbi(EIMSK, EIMSKB_CTS); - } -#endif // CONFIG_SER_HWHANDSHAKE - else - { -#if CONFIG_SER_TXFILL && (CONFIG_KBUS_PORT == 1) - /* Send with ninth bit set. Receiver in MCPM mode will receive it */ - UCSR1B |= BV(TXB8); -#endif - UDR1 = fifo_pop(txfifo); - } -} -#endif // AVR_HAS_UART1 - - -/*! - * Serial 0 RX complete interrupt handler. - * - * This handler is interruptible. - * Interrupt are reenabled as soon as recv complete interrupt is - * disabled. Using INTERRUPT() is troublesome when the serial - * is heavily loaded, because an interrupt could be retriggered - * when executing the handler prologue before RXCIE is disabled. - */ -SIGNAL(SIG_UART0_RECV) -{ - /* Disable Recv complete IRQ */ - UCSR0B &= ~BV(RXCIE); - ENABLE_INTS; - - /* Should be read before UDR */ - ser_uart0->status |= UCSR0A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR); - - /* To clear the RXC flag we must _always_ read the UDR even when we're - * not going to accept the incoming data, otherwise a new interrupt - * will occur once the handler terminates. - */ - char c = UDR0; - struct FIFOBuffer * const rxfifo = &ser_uart0->rxfifo; - - if (fifo_isfull(rxfifo)) - ser_uart0->status |= SERRF_RXFIFOOVERRUN; - else - { - fifo_push(rxfifo, c); -#if CONFIG_SER_HWHANDSHAKE - if (fifo_isfull(rxfifo)) - RTS_OFF; -#endif - } - - /* Reenable receive complete int */ - UCSR0B |= BV(RXCIE); -} - - -#if AVR_HAS_UART1 - -/*! - * Serial 1 RX complete interrupt handler. - * - * This handler is interruptible. - * Interrupt are reenabled as soon as recv complete interrupt is - * disabled. Using INTERRUPT() is troublesome when the serial - * is heavily loaded, because an interrupt could be retriggered - * when executing the handler prologue before RXCIE is disabled. - */ -SIGNAL(SIG_UART1_RECV) -{ - /* Disable Recv complete IRQ */ - UCSR1B &= ~BV(RXCIE); - ENABLE_INTS; - - /* Should be read before UDR */ - ser_uart1->status |= UCSR1A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR); - - /* To avoid an IRQ storm, we must _always_ read the UDR even when we're - * not going to accept the incoming data - */ - char c = UDR1; - struct FIFOBuffer * const rxfifo = &ser_uart1->rxfifo; - - if (fifo_isfull(rxfifo)) - ser_uart1->status |= SERRF_RXFIFOOVERRUN; - else - { - fifo_push(rxfifo, c); -#if CONFIG_SER_HWHANDSHAKE - if (fifo_isfull(rxfifo)) - RTS_OFF; -#endif - } - /* Reenable receive complete int */ - UCSR1B |= BV(RXCIE); -} - -#endif // AVR_HAS_UART1 - - -/* - * SPI Flag: true if we are transmitting/receiving with the SPI. - * - * This kludge is necessary because the SPI sends and receives bytes - * at the same time and the SPI IRQ is unique for send/receive. - * The only way to start transmission is to write data in SPDR (this - * is done by spi_starttx()). We do this *only* if a transfer is - * not already started. - */ -static volatile bool spi_sending = false; - -static void spi_starttx(UNUSED(struct SerialHardware *, ctx)) -{ - cpuflags_t flags; - - DISABLE_IRQSAVE(flags); - - /* Send data only if the SPI is not already transmitting */ - if (!spi_sending && !fifo_isempty(&ser_spi->txfifo)) - { - SPDR = fifo_pop(&ser_spi->txfifo); - spi_sending = true; - } - - ENABLE_IRQRESTORE(flags); -} - -/*! - * SPI interrupt handler - */ -SIGNAL(SIG_SPI) -{ - /* Read incoming byte. */ - if (!fifo_isfull(&ser_spi->rxfifo)) - fifo_push(&ser_spi->rxfifo, SPDR); - /* - * FIXME - else - ser_spi->status |= SERRF_RXFIFOOVERRUN; - */ - - /* Send */ - if (!fifo_isempty(&ser_spi->txfifo)) - SPDR = fifo_pop(&ser_spi->txfifo); - else - spi_sending = false; -} - - -static const struct SerialHardwareVT UART0_VT = -{ - .init = uart0_init, - .cleanup = uart0_cleanup, - .setbaudrate = uart0_setbaudrate, - .setparity = uart0_setparity, - .enabletxirq = uart0_enabletxirq, -}; - -#if AVR_HAS_UART1 -static const struct SerialHardwareVT UART1_VT = -{ - .init = uart1_init, - .cleanup = uart1_cleanup, - .setbaudrate = uart1_setbaudrate, - .setparity = uart1_setparity, - .enabletxirq = uart1_enabletxirq, -}; -#endif // AVR_HAS_UART1 - -static const struct SerialHardwareVT SPI_VT = -{ - .init = spi_init, - .cleanup = spi_cleanup, - .setbaudrate = spi_setbaudrate, - .setparity = spi_setparity, - .enabletxirq = spi_starttx, -}; - -static struct SerialHardware UARTDescs[SER_CNT] = -{ - { .table = &UART0_VT }, -#if AVR_HAS_UART1 - { .table = &UART1_VT }, -#endif - { .table = &SPI_VT }, -}; - -struct SerialHardware* ser_hw_getdesc(int unit) -{ - ASSERT(unit < SER_CNT); - return &UARTDescs[unit]; -}