#define CFG_MT29F_H
/**
- * Module logging level.
+ * Page data size
+ *
+ * Size of the data section of a programmable page in bytes.
+ *
+ * $WIZ$ type = "int"
+ */
+#define CONFIG_MT29F_DATA_SIZE 2048
+
+/**
+ * Page spare area size
+ *
+ * Size of the spare section of a programmable page in bytes.
+ *
+ * $WIZ$ type = "int"
+ */
+#define CONFIG_MT29F_SPARE_SIZE 64
+
+/**
+ * Pages per block
+ *
+ * Number of pages in a erase block.
+ *
+ * $WIZ$ type = "int"
+ */
+#define CONFIG_MT29F_PAGES_PER_BLOCK 64
+
+/**
+ * Number of blocks
+ *
+ * Total number of erase blocks in one NAND chip.
+ *
+ * $WIZ$ type = "int"
+ */
+#define CONFIG_MT29F_NUM_BLOCK 2048
+
+/**
+ * Number of reserved blocks
+ *
+ * Blocks reserved for remapping defective NAND blocks.
+ *
+ * $WIZ$ type = "int"
+ */
+#define CONFIG_MT29F_NUM_REMAP_BLOCKS 128
+
+/**
+ * NAND operations timeout
+ *
+ * How many milliseconds the cpu waits for
+ * completion of NAND operations.
+ *
+ * $WIZ$ type = "int"
+ */
+#define CONFIG_MT29F_TMOUT 100
+
+/**
+ * Module logging level
*
* $WIZ$ type = "enum"
* $WIZ$ value_list = "log_level"
#define CONFIG_MT29F_LOG_LEVEL LOG_LVL_INFO
/**
- * module logging format.
+ * Module logging format
*
* $WIZ$ type = "enum"
* $WIZ$ value_list = "log_format"
*/
#define CONFIG_MT29F_LOG_FORMAT LOG_FMT_TERSE
-#if 0
-/**
- * Write emb flash timeout.
- * For how many milliseconds the cpu wait
- * to complete write operation.
- *
- * $WIZ$ type = "int"
- */
-#define CONFIG_FLASH_WR_TIMEOUT 100
-#endif
-
#endif /* CFG_MT29F_H */
*/
#include "mt29f_sam3.h"
-#include "cfg/cfg_mt29f.h"
-
-// Define log settings for cfg/log.h
-#define LOG_LEVEL CONFIG_MT29F_LOG_LEVEL
-#define LOG_FORMAT CONFIG_MT29F_LOG_FORMAT
-
+#include <drv/mt29f.h>
#include <cfg/log.h>
#include <cfg/macros.h>
#include <io/sam3.h>
#include <drv/timer.h>
-#include <drv/mt29f.h>
-#include <struct/heap.h>
#include <cpu/power.h> /* cpu_relax() */
#include <cpu/types.h>
-#include <string.h> /* memcpy() */
-
-// Timeout for NAND operations in ms
-#define MT29F_TMOUT 100
-
-// NAND flash status codes
-#define MT29F_STATUS_READY BV(6)
-#define MT29F_STATUS_ERROR BV(0)
-
-// NAND flash commands
-#define MT29F_CMD_READ_1 0x00
-#define MT29F_CMD_READ_2 0x30
-#define MT29F_CMD_COPYBACK_READ_1 0x00
-#define MT29F_CMD_COPYBACK_READ_2 0x35
-#define MT29F_CMD_COPYBACK_PROGRAM_1 0x85
-#define MT29F_CMD_COPYBACK_PROGRAM_2 0x10
-#define MT29F_CMD_RANDOM_OUT 0x05
-#define MT29F_CMD_RANDOM_OUT_2 0xE0
-#define MT29F_CMD_RANDOM_IN 0x85
-#define MT29F_CMD_READID 0x90
-#define MT29F_CMD_WRITE_1 0x80
-#define MT29F_CMD_WRITE_2 0x10
-#define MT29F_CMD_ERASE_1 0x60
-#define MT29F_CMD_ERASE_2 0xD0
-#define MT29F_CMD_STATUS 0x70
-#define MT29F_CMD_RESET 0xFF
-
-// Addresses for sending command, addresses and data bytes to flash
-#define MT29F_CMD_ADDR 0x60400000
-#define MT29F_ADDR_ADDR 0x60200000
-#define MT29F_DATA_ADDR 0x60000000
-
-// Get chip select mask for command register
-#define MT29F_CSID(chip) (((chip)->chip_select << NFC_CMD_CSID_SHIFT) & NFC_CMD_CSID_MASK)
-
-// Get block from page
-#define PAGE(blk) ((blk) * MT29F_PAGES_PER_BLOCK)
-
-// Page from block and page in block
-#define BLOCK(page) ((uint16_t)((page) / MT29F_PAGES_PER_BLOCK))
-#define PAGE_IN_BLOCK(page) ((uint16_t)((page) % MT29F_PAGES_PER_BLOCK))
+#include <string.h> /* memcpy, memset */
/*
- * Remap info written in the first page of each block
- * used to remap bad blocks.
+ * PIO definitions.
*/
-struct RemapInfo
-{
- uint32_t tag; // Magic number to detect valid info
- uint16_t mapped_blk; // Bad block the block containing this info is remapping
-};
+#define MT29F_PIN_CE BV(6)
+#define MT29F_PIN_RB BV(2)
+#define MT29F_PINS_PORTA (MT29F_PIN_CE | MT29F_PIN_RB)
+#define MT29F_PERIPH_PORTA PIO_PERIPH_B
+#define MT29F_PIN_OE BV(19)
+#define MT29F_PIN_WE BV(20)
+#define MT29F_PIN_IO 0x0000FFFF
+#define MT29F_PINS_PORTC (MT29F_PIN_OE | MT29F_PIN_WE | MT29F_PIN_IO)
+#define MT29F_PERIPH_PORTC PIO_PERIPH_A
-/*
- * Translate flash page index plus a byte offset
- * in the five address cycles format needed by NAND.
- *
- * Cycles in x8 mode as the MT29F2G08AAD
- * CA = column addr, PA = page addr, BA = block addr
- *
- * Cycle I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0
- * -------------------------------------------------------
- * First CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0
- * Second LOW LOW LOW LOW CA11 CA10 CA9 CA8
- * Third BA7 BA6 PA5 PA4 PA3 PA2 PA1 PA0
- * Fourth BA15 BA14 BA13 BA12 BA11 BA10 BA9 BA8
- * Fifth LOW LOW LOW LOW LOW LOW LOW BA16
- */
-static void getAddrCycles(uint32_t page, uint16_t offset, uint32_t *cycle0, uint32_t *cycle1234)
-{
- ASSERT(offset < MT29F_PAGE_SIZE);
-
- *cycle0 = offset & 0xff;
- *cycle1234 = (page << 8) | ((offset >> 8) & 0xf);
-
- //LOG_INFO("mt29f addr: %lx %lx\n", *cycle1234, *cycle0);
-}
-
-
-INLINE bool nfcIsBusy(void)
-{
- return HWREG(NFC_CMD_BASE_ADDR + NFC_CMD_NFCCMD) & 0x8000000;
-}
-
-
-/*
- * Return true if SMC/NFC controller completed the last operations.
- */
-INLINE bool isCmdDone(void)
-{
- return SMC_SR & SMC_SR_CMDDONE;
-}
+#define MT29F_PIN_CLE BV(9)
+#define MT29F_PIN_ALE BV(8)
+#define MT29F_PINS_PORTD (MT29F_PIN_CLE | MT29F_PIN_ALE)
+#define MT29F_PERIPH_PORTD PIO_PERIPH_A
/*
* signal.
* Return true for edge detection, false in case of timeout.
*/
-static bool waitReadyBusy(void)
+bool mt29f_waitReadyBusy(UNUSED_ARG(Mt29f *, chip), time_t timeout)
{
time_t start = timer_clock();
while (!(SMC_SR & SMC_SR_RB_EDGE0))
{
cpu_relax();
- if (timer_clock() - start > MT29F_TMOUT)
+ if (timer_clock() - start > timeout)
{
LOG_INFO("mt29f: R/B timeout\n");
return false;
* Wait for transfer to complete until timeout.
* If transfer completes return true, false in case of timeout.
*/
-static bool waitTransferComplete(void)
+bool mt29f_waitTransferComplete(UNUSED_ARG(Mt29f *, chip), time_t timeout)
{
time_t start = timer_clock();
while (!(SMC_SR & SMC_SR_XFRDONE))
{
cpu_relax();
- if (timer_clock() - start > MT29F_TMOUT)
+ if (timer_clock() - start > timeout)
{
LOG_INFO("mt29f: xfer complete timeout\n");
return false;
/*
* Send command to NAND and wait for completion.
*/
-static void sendCommand(uint32_t cmd,
+void mt29f_sendCommand(Mt29f *chip,
+ uint32_t cmd1, uint32_t cmd2,
int num_cycles, uint32_t cycle0, uint32_t cycle1234)
{
reg32_t *cmd_addr;
+ uint32_t cmd_val;
- while (nfcIsBusy());
+ while (HWREG(NFC_CMD_BASE_ADDR + NFC_CMD_NFCCMD) & 0x8000000);
if (num_cycles == 5)
SMC_ADDR = cycle0;
- cmd_addr = (reg32_t *)(NFC_CMD_BASE_ADDR + cmd);
- *cmd_addr = cycle1234;
-
- while (!isCmdDone());
-}
-
-
-static bool isOperationComplete(Mt29f *chip)
-{
- uint8_t status;
-
- sendCommand(MT29F_CSID(chip) |
- NFC_CMD_NFCCMD | NFC_CMD_ACYCLE_NONE |
- MT29F_CMD_STATUS << 2,
- 0, 0, 0);
-
- status = (uint8_t)HWREG(MT29F_DATA_ADDR);
- return (status & MT29F_STATUS_READY) && !(status & MT29F_STATUS_ERROR);
-}
-
-
-static void chipReset(Mt29f *chip)
-{
- sendCommand(MT29F_CSID(chip) |
- NFC_CMD_NFCCMD | NFC_CMD_ACYCLE_NONE |
- MT29F_CMD_RESET << 2,
- 0, 0, 0);
-
- waitReadyBusy();
-}
-
-
-/**
- * Erase the whole block.
- */
-int mt29f_blockErase(Mt29f *chip, uint16_t block)
-{
- uint32_t cycle0;
- uint32_t cycle1234;
-
- uint16_t remapped_block = chip->block_map[block];
- if (block != remapped_block)
- {
- LOG_INFO("mt29f_blockErase: remapped block: blk %d->%d\n", block, remapped_block);
- block = remapped_block;
- }
-
- getAddrCycles(PAGE(block), 0, &cycle0, &cycle1234);
-
- sendCommand(MT29F_CSID(chip) |
- NFC_CMD_NFCCMD | NFC_CMD_ACYCLE_THREE | NFC_CMD_VCMD2 |
- (MT29F_CMD_ERASE_2 << 10) | (MT29F_CMD_ERASE_1 << 2),
- 3, 0, cycle1234 >> 8);
-
- waitReadyBusy();
-
- if (!isOperationComplete(chip))
- {
- LOG_ERR("mt29f: error erasing block\n");
- chip->status |= MT29F_ERR_ERASE;
- return -1;
- }
-
- return 0;
-}
-
-
-/**
- * Read Device ID and configuration codes.
- */
-bool mt29f_getDevId(Mt29f *chip, uint8_t dev_id[5])
-{
- sendCommand(MT29F_CSID(chip) |
- NFC_CMD_NFCCMD | NFC_CMD_NFCEN | NFC_CMD_ACYCLE_ONE |
- MT29F_CMD_READID << 2,
- 1, 0, 0);
-
- waitReadyBusy();
- if (!waitTransferComplete())
- {
- LOG_ERR("mt29f: getDevId timeout\n");
- chip->status |= MT29F_ERR_RD_TMOUT;
- return false;
- }
-
- memcpy(dev_id, (void *)NFC_SRAM_BASE_ADDR, 5);
- return true;
-}
-
-
-static bool checkEcc(Mt29f *chip)
-{
- struct RemapInfo *remap_info = (struct RemapInfo *)(NFC_SRAM_BASE_ADDR + MT29F_REMAP_TAG_OFFSET);
-
- /*
- * Check for ECC hardware status only if a valid RemapInfo structure is found.
- * That guarantees we wrote the block and a valid ECC is present.
- */
- if (remap_info->tag == MT29F_REMAP_TAG)
- {
- uint32_t sr1 = SMC_ECC_SR1;
- if (sr1)
- {
- LOG_INFO("ECC error, ECC_SR1=0x%lx\n", sr1);
- chip->status |= MT29F_ERR_ECC;
- return false;
- }
- }
-
- return true;
-}
-
-
-static bool mt29f_readPage(Mt29f *chip, uint32_t page, uint16_t offset)
-{
- uint32_t cycle0;
- uint32_t cycle1234;
-
- //LOG_INFO("mt29f_readPage: page 0x%lx off 0x%x\n", page, offset);
-
- getAddrCycles(page, offset, &cycle0, &cycle1234);
-
- sendCommand(MT29F_CSID(chip) |
- NFC_CMD_NFCCMD | NFC_CMD_NFCEN | NFC_CMD_ACYCLE_FIVE | NFC_CMD_VCMD2 |
- (MT29F_CMD_READ_2 << 10) | (MT29F_CMD_READ_1 << 2),
- 5, cycle0, cycle1234);
-
- waitReadyBusy();
- if (!waitTransferComplete())
- {
- LOG_ERR("mt29f: read timeout\n");
- chip->status |= MT29F_ERR_RD_TMOUT;
- return false;
- }
-
- return true;
-}
-
-
-/*
- * Read page data and ECC, checking for errors.
- * TODO: fix errors with ECC when possible.
- */
-static bool mt29f_read(Mt29f *chip, uint32_t page, void *buf, uint16_t offset, uint16_t size)
-{
- uint32_t remapped_page = PAGE(chip->block_map[BLOCK(page)]) + PAGE_IN_BLOCK(page);
-
- //LOG_INFO("mt29f_read: page=%ld, offset=%d, size=%d\n", page, offset, size);
-
- if (page != remapped_page)
- {
- LOG_INFO("mt29f_read: remapped block: blk %d->%d, pg %ld->%ld\n",
- BLOCK(page), chip->block_map[BLOCK(page)], page, remapped_page);
- page = remapped_page;
- }
-
- if (!mt29f_readPage(chip, page, 0))
- return false;
-
- memcpy(buf, (void *)(NFC_SRAM_BASE_ADDR + offset), size);
-
- return checkEcc(chip);
-}
-
-
-/*
- * Write data in NFC SRAM buffer to a NAND page, starting at a given offset.
- * Usually offset will be 0 to write data or MT29F_DATA_SIZE to write the spare
- * area.
- *
- * According to datasheet to get ECC computed by hardware is sufficient
- * to write the main area. But it seems that in that way the last ECC_PR
- * register is not generated. The workaround is to write data and dummy (ff)
- * spare data in one write, at this point the last ECC_PR is correct and
- * ECC data can be written in the spare area with a second program operation.
- */
-static bool mt29f_writePage(Mt29f *chip, uint32_t page, uint16_t offset)
-{
- uint32_t cycle0;
- uint32_t cycle1234;
-
- //LOG_INFO("mt29f_writePage: page 0x%lx off 0x%x\n", page, offset);
+ cmd_val = NFC_CMD_NFCCMD
+ | ((chip->chip_select << NFC_CMD_CSID_SHIFT) & NFC_CMD_CSID_MASK)
+ | ((num_cycles << NFC_CMD_ACYCLE_SHIFT) & NFC_CMD_ACYCLE_MASK)
+ | cmd1 << 2
+ | cmd2 << 10;
- getAddrCycles(page, offset, &cycle0, &cycle1234);
+ // Check for commands transferring data
+ if (cmd1 == MT29F_CMD_WRITE_1 || cmd1 == MT29F_CMD_READ_1 || cmd1 == MT29F_CMD_READID)
+ cmd_val |= NFC_CMD_NFCEN;
- sendCommand(MT29F_CSID(chip) |
- NFC_CMD_NFCCMD | NFC_CMD_NFCWR | NFC_CMD_NFCEN | NFC_CMD_ACYCLE_FIVE |
- MT29F_CMD_WRITE_1 << 2,
- 5, cycle0, cycle1234);
+ // Check for commands writing data
+ if (cmd1 == MT29F_CMD_WRITE_1)
+ cmd_val |= NFC_CMD_NFCWR;
- if (!waitTransferComplete())
- {
- LOG_ERR("mt29f: write timeout\n");
- chip->status |= MT29F_ERR_WR_TMOUT;
- return false;
- }
-
- sendCommand(MT29F_CSID(chip) |
- NFC_CMD_NFCCMD | NFC_CMD_ACYCLE_NONE |
- MT29F_CMD_WRITE_2 << 2,
- 0, 0, 0);
-
- waitReadyBusy();
+ // Check for two command cycles
+ if (cmd2)
+ cmd_val |= NFC_CMD_VCMD2;
- if (!isOperationComplete(chip))
- {
- LOG_ERR("mt29f: error writing page\n");
- chip->status |= MT29F_ERR_WRITE;
- return false;
- }
-
- return true;
-}
-
-
-/*
- * Write data in a page.
- */
-static bool mt29f_writePageData(Mt29f *chip, uint32_t page, const void *buf, uint16_t size)
-{
- ASSERT(size <= MT29F_DATA_SIZE);
-
- memset((void *)NFC_SRAM_BASE_ADDR, 0xff, MT29F_PAGE_SIZE);
- memcpy((void *)NFC_SRAM_BASE_ADDR, buf, size);
+ cmd_addr = (reg32_t *)(NFC_CMD_BASE_ADDR + cmd_val);
+ *cmd_addr = cycle1234;
- return mt29f_writePage(chip, page, 0);
+ while (!(SMC_SR & SMC_SR_CMDDONE));
}
/*
- * Write the spare area in a page: ECC and remap block index.
- * \param page the page to be written
- * \parma original_page if different from page, it's the page that's being remapped
+ * Get NAND chip status register.
*
- * ECC data are extracted from ECC_PRx registers and written
- * in the page's spare area.
- * For 2048 bytes pages and 1 ECC word each 256 bytes,
- * 24 bytes of ECC data are stored.
+ * NOTE: this is global between different chip selects, so returns
+ * the status register of the last used NAND chip.
*/
-static bool mt29f_writePageSpare(Mt29f *chip, uint32_t page, uint32_t original_page)
+uint8_t mt29f_getChipStatus(UNUSED_ARG(Mt29f *, chip))
{
- int i;
- uint32_t *buf = (uint32_t *)NFC_SRAM_BASE_ADDR;
- struct RemapInfo *remap_info = (struct RemapInfo *)(NFC_SRAM_BASE_ADDR + MT29F_REMAP_TAG_OFFSET);
-
- memset((void *)NFC_SRAM_BASE_ADDR, 0xff, MT29F_SPARE_SIZE);
-
- for (i = 0; i < MT29F_ECC_NWORDS; i++)
- buf[i] = *((reg32_t *)(SMC_BASE + SMC_ECC_PR0_OFF) + i);
-
- // Write remap tag
- remap_info->tag = MT29F_REMAP_TAG;
- remap_info->mapped_blk = BLOCK(original_page);
-
- return mt29f_writePage(chip, page, MT29F_DATA_SIZE);
-}
-
-
-static bool mt29f_write(Mt29f *chip, uint32_t page, const void *buf, uint16_t size)
-{
- uint32_t remapped_page = PAGE(chip->block_map[BLOCK(page)]) + PAGE_IN_BLOCK(page);
-
- if (page != remapped_page)
- LOG_INFO("mt29f_write: remapped block: blk %d->%d, pg %ld->%ld\n",
- BLOCK(page), chip->block_map[BLOCK(page)], page, remapped_page);
-
- return
- mt29f_writePageData(chip, remapped_page, buf, size) &&
- mt29f_writePageSpare(chip, remapped_page, page);
+ return (uint8_t)HWREG(NFC_CMD_BASE_ADDR);
}
-/*
- * Check if the given block is marked bad: ONFI standard mandates
- * that bad block are marked with "00" bytes on the spare area of the
- * first page in block.
- */
-static bool blockIsGood(Mt29f *chip, uint16_t blk)
+void *mt29f_dataBuffer(UNUSED_ARG(Mt29f *, chip))
{
- uint8_t *first_byte = (uint8_t *)NFC_SRAM_BASE_ADDR;
- bool good;
-
- // Check first byte in spare area of first page in block
- mt29f_readPage(chip, PAGE(blk), MT29F_DATA_SIZE);
- good = *first_byte != 0;
-
- if (!good)
- LOG_INFO("mt29f: bad block %d\n", blk);
-
- return good;
+ return (void *)NFC_SRAM_BASE_ADDR;
}
-/*
- * Return the main partition block remapped on given block in the remap
- * partition (dest_blk).
- */
-static int getBadBlockFromRemapBlock(Mt29f *chip, uint16_t dest_blk)
+bool mt29f_checkEcc(Mt29f *chip)
{
- struct RemapInfo *remap_info = (struct RemapInfo *)NFC_SRAM_BASE_ADDR;
-
- if (!mt29f_readPage(chip, PAGE(dest_blk), MT29F_DATA_SIZE + MT29F_REMAP_TAG_OFFSET))
- return -1;
-
- if (remap_info->tag == MT29F_REMAP_TAG)
- return remap_info->mapped_blk;
- else
- return -1;
-}
-
-
-/*
- * Set a block remapping: src_blk (a block in main data partition) is remappend
- * on dest_blk (block in reserved remapped blocks partition).
- */
-static bool setMapping(Mt29f *chip, uint32_t src_blk, uint32_t dest_blk)
-{
- struct RemapInfo *remap_info = (struct RemapInfo *)NFC_SRAM_BASE_ADDR;
-
- LOG_INFO("mt29f, setMapping(): src=%ld dst=%ld\n", src_blk, dest_blk);
-
- if (!mt29f_readPage(chip, PAGE(dest_blk), MT29F_DATA_SIZE + MT29F_REMAP_TAG_OFFSET))
- return false;
-
- remap_info->tag = MT29F_REMAP_TAG;
- remap_info->mapped_blk = src_blk;
-
- return mt29f_writePage(chip, PAGE(dest_blk), MT29F_DATA_SIZE + MT29F_REMAP_TAG_OFFSET);
-}
-
-
-/*
- * Get a new block from the remap partition to use as a substitute
- * for a bad block.
- */
-static uint16_t getFreeRemapBlock(Mt29f *chip)
-{
- int blk;
-
- for (blk = chip->remap_start; blk < MT29F_NUM_BLOCKS; blk++)
- {
- if (blockIsGood(chip, blk))
- {
- chip->remap_start = blk + 1;
- return blk;
- }
- }
-
- LOG_ERR("mt29f: reserved blocks for bad block remapping exhausted!\n");
- return 0;
-}
-
-
-/*
- * Check if NAND is initialized.
- */
-static bool chipIsMarked(Mt29f *chip)
-{
- return getBadBlockFromRemapBlock(chip, MT29F_NUM_USER_BLOCKS) != -1;
-}
-
-
-/*
- * Initialize NAND (format). Scan NAND for factory marked bad blocks.
- * All bad blocks found are remapped to the remap partition: each
- * block in the remap partition used to remap bad blocks is marked.
- */
-static void initBlockMap(Mt29f *chip)
-{
- int b, last;
-
- // Default is for each block to not be remapped
- for (b = 0; b < MT29F_NUM_BLOCKS; b++)
- chip->block_map[b] = b;
- chip->remap_start = MT29F_NUM_USER_BLOCKS;
-
- if (chipIsMarked(chip))
+ uint32_t sr1 = SMC_ECC_SR1;
+ if (sr1)
{
- LOG_INFO("mt29f: found initialized NAND, searching for remapped blocks\n");
-
- // Scan for assigned blocks in remap area
- for (b = last = MT29F_NUM_USER_BLOCKS; b < MT29F_NUM_BLOCKS; b++)
- {
- int remapped_blk = getBadBlockFromRemapBlock(chip, b);
- if (remapped_blk != -1 && remapped_blk != b)
- {
- LOG_INFO("mt29f: found remapped block %d->%d\n", remapped_blk, b);
- chip->block_map[remapped_blk] = b;
- last = b + 1;
- }
- }
- chip->remap_start = last;
+ LOG_INFO("ECC error, ECC_SR1=0x%lx\n", sr1);
+ chip->status |= MT29F_ERR_ECC;
+ return false;
}
else
- {
- bool remapped_anything = false;
-
- LOG_INFO("mt29f: found new NAND, searching for bad blocks\n");
-
- for (b = 0; b < MT29F_NUM_USER_BLOCKS; b++)
- {
- if (!blockIsGood(chip, b))
- {
- chip->block_map[b] = getFreeRemapBlock(chip);
- setMapping(chip, b, chip->block_map[b]);
- remapped_anything = true;
- LOG_INFO("mt29f: found new bad block %d, remapped to %d\n", b, chip->block_map[b]);
- }
- }
-
- /*
- * If no bad blocks are found (we're lucky!) write a dummy
- * remap to mark NAND and detect we already scanned it next time.
- */
- if (!remapped_anything)
- {
- setMapping(chip, MT29F_NUM_USER_BLOCKS, MT29F_NUM_USER_BLOCKS);
- LOG_INFO("mt29f: no bad block founds, marked NAND\n");
- }
- }
+ return true;
}
-/**
- * Reset bad blocks map and erase all blocks.
+/*
+ * Compute ECC on data in a buffer.
*
- * \note DON'T USE on production chips: this function will try to erase
- * factory marked bad blocks too.
+ * \param chip nand context
+ * \param buf buffer containing data
+ * \param size size of data buffer
+ * \param ecc pointer to buffer where computed ECC is stored
+ * \param ecc_size max size for ecc buffer
*/
-void mt29f_format(Mt29f *chip)
+void mt29f_computeEcc(UNUSED_ARG(Mt29f *, chip),
+ UNUSED_ARG(const void *, buf), UNUSED_ARG(size_t, size), uint32_t *ecc, size_t ecc_size)
{
- int b;
-
- for (b = 0; b < MT29F_NUM_BLOCKS; b++)
- {
- LOG_INFO("mt29f: erasing block %d\n", b);
- chip->block_map[b] = b;
- mt29f_blockErase(chip, b);
- }
- chip->remap_start = MT29F_NUM_USER_BLOCKS;
+ size_t i;
+ for (i = 0; i < ecc_size; i++)
+ ecc[i] = *((reg32_t *)(SMC_BASE + SMC_ECC_PR0_OFF) + i);
}
-#ifdef _DEBUG
-/*
- * Create some bad blocks, erasing them and writing the bad block mark.
- */
-void mt29f_ruinSomeBlocks(Mt29f *chip)
+void mt29f_hwInit(UNUSED_ARG(Mt29f *, chip))
{
- int bads[] = { 7, 99, 555, 1003, 1004, 1432 };
- unsigned i;
-
- LOG_INFO("mt29f: erasing mark\n");
- mt29f_blockErase(chip, MT29F_NUM_USER_BLOCKS);
-
- for (i = 0; i < countof(bads); i++)
- {
- LOG_INFO("mt29f: erasing block %d\n", bads[i]);
- mt29f_blockErase(chip, bads[i]);
-
- LOG_INFO("mt29f: marking page %d as bad\n", PAGE(bads[i]));
- memset((void *)NFC_SRAM_BASE_ADDR, 0, MT29F_SPARE_SIZE);
- mt29f_writePage(chip, PAGE(bads[i]), MT29F_DATA_SIZE);
- }
-}
-
-#endif
+ // FIXME: Parameters specific for MT29F8G08AAD
-
-static void initPio(void)
-{
- /*
- * TODO: put following stuff in hw_ file dependent
- * Parameters for MT29F8G08AAD
- */
+ // PIO init
pmc_periphEnable(PIOA_ID);
pmc_periphEnable(PIOC_ID);
pmc_periphEnable(PIOD_ID);
PIOD_PUER = MT29F_PINS_PORTD;
pmc_periphEnable(SMC_SDRAMC_ID);
-}
-
-static void initSmc(void)
-{
+ // SMC init
SMC_SETUP0 = SMC_SETUP_NWE_SETUP(0)
| SMC_SETUP_NCS_WR_SETUP(0)
| SMC_SETUP_NRD_SETUP(0)
SMC_ECC_CTRL = SMC_ECC_CTRL_SWRST;
SMC_ECC_MD = SMC_ECC_MD_ECC_PAGESIZE_PS2048_64 | SMC_ECC_MD_TYPCORREC_C256B;
}
-
-
-static bool commonInit(Mt29f *chip, struct Heap *heap, unsigned chip_select)
-{
- memset(chip, 0, sizeof(Mt29f));
-
- DB(chip->fd.priv.type = KBT_NAND);
- chip->fd.blk_size = MT29F_BLOCK_SIZE;
- chip->fd.blk_cnt = MT29F_NUM_USER_BLOCKS;
-
- chip->chip_select = chip_select;
- chip->block_map = heap_allocmem(heap, MT29F_NUM_BLOCKS * sizeof(*chip->block_map));
- if (!chip->block_map)
- {
- LOG_ERR("mt29f: error allocating block map\n");
- return false;
- }
-
- initPio();
- initSmc();
- chipReset(chip);
- initBlockMap(chip);
-
- return true;
-}
-
-
-/**************** Kblock interface ****************/
-
-
-static size_t mt29f_writeDirect(struct KBlock *kblk, block_idx_t idx, const void *buf, size_t offset, size_t size)
-{
- ASSERT(offset <= MT29F_BLOCK_SIZE);
- ASSERT(offset % MT29F_DATA_SIZE == 0);
- ASSERT(size <= MT29F_BLOCK_SIZE);
- ASSERT(size % MT29F_DATA_SIZE == 0);
-
- //LOG_INFO("mt29f_writeDirect: idx=%ld offset=%d size=%d\n", idx, offset, size);
-
- mt29f_blockErase(MT29F_CAST(kblk), idx);
-
- while (offset < size)
- {
- uint32_t page = PAGE(idx) + (offset / MT29F_DATA_SIZE);
-
- if (!mt29f_write(MT29F_CAST(kblk), page, buf, MT29F_DATA_SIZE))
- break;
-
- offset += MT29F_DATA_SIZE;
- buf = (const char *)buf + MT29F_DATA_SIZE;
- }
-
- return offset;
-}
-
-
-static size_t mt29f_readDirect(struct KBlock *kblk, block_idx_t idx, void *buf, size_t offset, size_t size)
-{
- uint32_t page;
- size_t read_size;
- size_t read_offset;
- size_t nread = 0;
-
- ASSERT(offset < MT29F_BLOCK_SIZE);
- ASSERT(size <= MT29F_BLOCK_SIZE);
-
- //LOG_INFO("mt29f_readDirect: idx=%ld offset=%d size=%d\n", idx, offset, size);
-
- while (nread < size)
- {
- page = PAGE(idx) + (offset / MT29F_DATA_SIZE);
- read_offset = offset % MT29F_DATA_SIZE;
- read_size = MIN(size, MT29F_DATA_SIZE - read_offset);
-
- if (!mt29f_read(MT29F_CAST(kblk), page, (char *)buf + nread, read_offset, read_size))
- break;
-
- offset += read_size;
- nread += read_size;
- }
-
- return nread;
-}
-
-
-static int mt29f_error(struct KBlock *kblk)
-{
- Mt29f *chip = MT29F_CAST(kblk);
- return chip->status;
-}
-
-
-static void mt29f_clearError(struct KBlock *kblk)
-{
- Mt29f *chip = MT29F_CAST(kblk);
- chip->status = 0;
-}
-
-
-static const KBlockVTable mt29f_buffered_vt =
-{
- .readDirect = mt29f_readDirect,
- .writeDirect = mt29f_writeDirect,
-
- .readBuf = kblock_swReadBuf,
- .writeBuf = kblock_swWriteBuf,
- .load = kblock_swLoad,
- .store = kblock_swStore,
-
- .error = mt29f_error,
- .clearerr = mt29f_clearError,
-};
-
-static const KBlockVTable mt29f_unbuffered_vt =
-{
- .readDirect = mt29f_readDirect,
- .writeDirect = mt29f_writeDirect,
-
- .error = mt29f_error,
- .clearerr = mt29f_clearError,
-};
-
-
-/**
- * Initialize NAND kblock driver in buffered mode.
- */
-bool mt29f_init(Mt29f *chip, struct Heap *heap, unsigned chip_select)
-{
- if (!commonInit(chip, heap, chip_select))
- return false;
-
- chip->fd.priv.vt = &mt29f_buffered_vt;
- chip->fd.priv.flags |= KB_BUFFERED;
-
- chip->fd.priv.buf = heap_allocmem(heap, MT29F_BLOCK_SIZE);
- if (!chip->fd.priv.buf)
- {
- LOG_ERR("mt29f: error allocating block buffer\n");
- return false;
- }
-
- // Load the first block in the cache
- return mt29f_readDirect(&chip->fd, 0, chip->fd.priv.buf, 0, chip->fd.blk_size);
-}
-
-
-/**
- * Initialize NAND kblock driver in unbuffered mode.
- */
-bool mt29f_initUnbuffered(Mt29f *chip, struct Heap *heap, unsigned chip_select)
-{
- if (!commonInit(chip, heap, chip_select))
- return false;
-
- chip->fd.priv.vt = &mt29f_unbuffered_vt;
- return true;
-}
-
#ifndef MT29F_SAM3_H
#define MT29F_SAM3_H
-#include <drv/mt29f.h>
-
-
-// MT29F2G08AAD, FIXME: configurable
-#define MT29F_DATA_SIZE 0x800 // 2048 B
-#define MT29F_SPARE_SIZE 0x40 // 64 B
-#define MT29F_PAGE_SIZE (MT29F_DATA_SIZE + MT29F_SPARE_SIZE)
-#define MT29F_PAGES_PER_BLOCK 64
-#define MT29F_BLOCK_SIZE (MT29F_DATA_SIZE * MT29F_PAGES_PER_BLOCK)
-#define MT29F_NUM_BLOCKS 2048
-#define MT29F_ECC_NWORDS (MT29F_DATA_SIZE / 256)
-#define MT29F_REMAP_TAG_OFFSET 0x38
-#define MT29F_REMAP_TAG 0x3e10c8ed
-
-// Number of reserved block for remapping
-#define MT29F_NUM_REMAP_BLOCKS 128
-// Number of usable blocks, and index of first remapping block
-#define MT29F_NUM_USER_BLOCKS (MT29F_NUM_BLOCKS - MT29F_NUM_REMAP_BLOCKS)
-
-
-/*
- * PIO definitions.
- */
-#define MT29F_PIN_CE BV(6)
-#define MT29F_PIN_RB BV(2)
-#define MT29F_PINS_PORTA (MT29F_PIN_CE | MT29F_PIN_RB)
-#define MT29F_PERIPH_PORTA PIO_PERIPH_B
-
-#define MT29F_PIN_OE BV(19)
-#define MT29F_PIN_WE BV(20)
-#define MT29F_PIN_IO 0x0000FFFF
-#define MT29F_PINS_PORTC (MT29F_PIN_OE | MT29F_PIN_WE | MT29F_PIN_IO)
-#define MT29F_PERIPH_PORTC PIO_PERIPH_A
-
-#define MT29F_PIN_CLE BV(9)
-#define MT29F_PIN_ALE BV(8)
-#define MT29F_PINS_PORTD (MT29F_PIN_CLE | MT29F_PIN_ALE)
-#define MT29F_PERIPH_PORTD PIO_PERIPH_A
-
#endif /* MT29F_SAM3_H */
--- /dev/null
+/**
+* \file
+* <!--
+* This file is part of BeRTOS.
+*
+* Bertos is free software; you can redistribute it and/or modify
+* it under the terms of the GNU General Public License as published by
+* the Free Software Foundation; either version 2 of the License, or
+* (at your option) any later version.
+*
+* This program is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+* GNU General Public License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with this program; if not, write to the Free Software
+* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+*
+* As a special exception, you may use this file as part of a free software
+* library without restriction. Specifically, if other files instantiate
+* templates or use macros or inline functions from this file, or you compile
+* this file and link it with other files to produce an executable, this
+* file does not by itself cause the resulting executable to be covered by
+* the GNU General Public License. This exception does not however
+* invalidate any other reasons why the executable file might be covered by
+* the GNU General Public License.
+*
+* Copyright 2011 Develer S.r.l. (http://www.develer.com/)
+* -->
+*
+* \brief Micron MT29F serial NAND driver
+*
+* This module allows read/write access to Micron MT29F serial
+* NANDs.
+*
+* \author Stefano Fedrigo <aleph@develer.com>
+*/
+
+#include "mt29f.h"
+
+#include <cfg/log.h>
+#include <struct/heap.h>
+#include <string.h> // memset
+
+
+/*
+ * Remap info written in the first page of each block
+ * used to remap bad blocks.
+ */
+struct RemapInfo
+{
+ uint32_t tag; // Magic number to detect valid info
+ uint16_t mapped_blk; // Bad block the block containing this info is remapping
+};
+
+#define MT29F_REMAP_TAG_OFFSET (CONFIG_MT29F_SPARE_SIZE - sizeof(struct RemapInfo))
+#define MT29F_REMAP_TAG 0x3e10c8ed
+
+#define MT29F_ECC_NWORDS (CONFIG_MT29F_DATA_SIZE / 256)
+
+// NAND flash status codes
+#define MT29F_STATUS_READY BV(6)
+#define MT29F_STATUS_ERROR BV(0)
+
+
+/*
+ * Translate flash page index plus a byte offset
+ * in the five address cycles format needed by NAND.
+ *
+ * Cycles in x8 mode as the MT29F2G08AAD
+ * CA = column addr, PA = page addr, BA = block addr
+ *
+ * Cycle I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0
+ * -------------------------------------------------------
+ * First CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0
+ * Second LOW LOW LOW LOW CA11 CA10 CA9 CA8
+ * Third BA7 BA6 PA5 PA4 PA3 PA2 PA1 PA0
+ * Fourth BA15 BA14 BA13 BA12 BA11 BA10 BA9 BA8
+ * Fifth LOW LOW LOW LOW LOW LOW LOW BA16
+ */
+static void getAddrCycles(uint32_t page, uint16_t offset, uint32_t *cycle0, uint32_t *cycle1234)
+{
+ ASSERT(offset < MT29F_PAGE_SIZE);
+
+ *cycle0 = offset & 0xff;
+ *cycle1234 = (page << 8) | ((offset >> 8) & 0xf);
+
+ //LOG_INFO("mt29f addr: %lx %lx\n", *cycle1234, *cycle0);
+}
+
+
+static void chipReset(Mt29f *chip)
+{
+ mt29f_sendCommand(chip, MT29F_CMD_RESET, 0, 0, 0, 0);
+ mt29f_waitReadyBusy(chip, CONFIG_MT29F_TMOUT);
+}
+
+
+static bool isOperationComplete(Mt29f *chip)
+{
+ uint8_t status;
+
+ mt29f_sendCommand(chip, MT29F_CMD_STATUS, 0, 0, 0, 0);
+
+ status = mt29f_getChipStatus(chip);
+ return (status & MT29F_STATUS_READY) && !(status & MT29F_STATUS_ERROR);
+}
+
+
+/**
+ * Erase the whole block.
+ */
+int mt29f_blockErase(Mt29f *chip, uint16_t block)
+{
+ uint32_t cycle0;
+ uint32_t cycle1234;
+
+ uint16_t remapped_block = chip->block_map[block];
+ if (block != remapped_block)
+ {
+ LOG_INFO("mt29f_blockErase: remapped block: blk %d->%d\n", block, remapped_block);
+ block = remapped_block;
+ }
+
+ getAddrCycles(PAGE(block), 0, &cycle0, &cycle1234);
+
+ mt29f_sendCommand(chip, MT29F_CMD_ERASE_1, MT29F_CMD_ERASE_2, 3, 0, cycle1234 >> 8);
+
+ mt29f_waitReadyBusy(chip, CONFIG_MT29F_TMOUT);
+
+ if (!isOperationComplete(chip))
+ {
+ LOG_ERR("mt29f: error erasing block\n");
+ chip->status |= MT29F_ERR_ERASE;
+ return -1;
+ }
+
+ return 0;
+}
+
+
+/**
+ * Read Device ID and configuration codes.
+ */
+bool mt29f_getDevId(Mt29f *chip, uint8_t dev_id[5])
+{
+ mt29f_sendCommand(chip, MT29F_CMD_READID, 0, 1, 0, 0);
+
+ mt29f_waitReadyBusy(chip, CONFIG_MT29F_TMOUT);
+ if (!mt29f_waitTransferComplete(chip, CONFIG_MT29F_TMOUT))
+ {
+ LOG_ERR("mt29f: getDevId timeout\n");
+ chip->status |= MT29F_ERR_RD_TMOUT;
+ return false;
+ }
+
+ memcpy(dev_id, mt29f_dataBuffer(chip), sizeof(dev_id));
+ return true;
+}
+
+
+static bool mt29f_readPage(Mt29f *chip, uint32_t page, uint16_t offset)
+{
+ uint32_t cycle0;
+ uint32_t cycle1234;
+
+ //LOG_INFO("mt29f_readPage: page 0x%lx off 0x%x\n", page, offset);
+
+ getAddrCycles(page, offset, &cycle0, &cycle1234);
+
+ mt29f_sendCommand(chip, MT29F_CMD_READ_1, MT29F_CMD_READ_2, 5, cycle0, cycle1234);
+
+ mt29f_waitReadyBusy(chip, CONFIG_MT29F_TMOUT);
+ if (!mt29f_waitTransferComplete(chip, CONFIG_MT29F_TMOUT))
+ {
+ LOG_ERR("mt29f: read timeout\n");
+ chip->status |= MT29F_ERR_RD_TMOUT;
+ return false;
+ }
+
+ return true;
+}
+
+
+/*
+ * Read page data and ECC, checking for errors.
+ * TODO: fix errors with ECC when possible.
+ */
+static bool mt29f_read(Mt29f *chip, uint32_t page, void *buf, uint16_t offset, uint16_t size)
+{
+ struct RemapInfo remap_info;
+ uint32_t remapped_page = PAGE(chip->block_map[BLOCK(page)]) + PAGE_IN_BLOCK(page);
+
+ //LOG_INFO("mt29f_read: page=%ld, offset=%d, size=%d\n", page, offset, size);
+
+ if (page != remapped_page)
+ {
+ LOG_INFO("mt29f_read: remapped block: blk %d->%d, pg %ld->%ld\n",
+ BLOCK(page), chip->block_map[BLOCK(page)], page, remapped_page);
+ page = remapped_page;
+ }
+
+ if (!mt29f_readPage(chip, page, 0))
+ return false;
+
+ memcpy(buf, (char *)mt29f_dataBuffer(chip) + offset, size);
+
+ /*
+ * Check for ECC hardware status only if a valid RemapInfo structure is found.
+ * That guarantees the page is written by us and a valid ECC is present.
+ */
+ memcpy(&remap_info, (char *)buf + MT29F_REMAP_TAG_OFFSET, sizeof(remap_info));
+ if (remap_info.tag == MT29F_REMAP_TAG)
+ return mt29f_checkEcc(chip);
+ else
+ return true;
+}
+
+
+/*
+ * Write data in NFC SRAM buffer to a NAND page, starting at a given offset.
+ * Usually offset will be 0 to write data or CONFIG_MT29F_DATA_SIZE to write the spare
+ * area.
+ *
+ * According to datasheet to get ECC computed by hardware is sufficient
+ * to write the main area. But it seems that in that way the last ECC_PR
+ * register is not generated. The workaround is to write data and dummy (ff)
+ * spare data in one write, at this point the last ECC_PR is correct and
+ * ECC data can be written in the spare area with a second program operation.
+ */
+static bool mt29f_writePage(Mt29f *chip, uint32_t page, uint16_t offset)
+{
+ uint32_t cycle0;
+ uint32_t cycle1234;
+
+ //LOG_INFO("mt29f_writePage: page 0x%lx off 0x%x\n", page, offset);
+
+ getAddrCycles(page, offset, &cycle0, &cycle1234);
+
+ mt29f_sendCommand(chip, MT29F_CMD_WRITE_1, 0, 5, cycle0, cycle1234);
+
+ if (!mt29f_waitTransferComplete(chip, CONFIG_MT29F_TMOUT))
+ {
+ LOG_ERR("mt29f: write timeout\n");
+ chip->status |= MT29F_ERR_WR_TMOUT;
+ return false;
+ }
+
+ mt29f_sendCommand(chip, MT29F_CMD_WRITE_2, 0, 0, 0, 0);
+
+ mt29f_waitReadyBusy(chip, CONFIG_MT29F_TMOUT);
+
+ if (!isOperationComplete(chip))
+ {
+ LOG_ERR("mt29f: error writing page\n");
+ chip->status |= MT29F_ERR_WRITE;
+ return false;
+ }
+
+ return true;
+}
+
+
+/*
+ * Write data, ECC and remap block info.
+ *
+ * \param page the page to be written
+ * \parma original_page if different from page, it's the page that's being remapped
+ *
+ * ECC data are extracted from ECC_PRx registers and written
+ * in the page's spare area.
+ * For 2048 bytes pages and 1 ECC word each 256 bytes,
+ * 24 bytes of ECC data are stored.
+ */
+static bool mt29f_write(Mt29f *chip, uint32_t page, const void *buf, size_t size)
+{
+ struct RemapInfo remap_info;
+ uint32_t *nand_buf = (uint32_t *)mt29f_dataBuffer(chip);
+ uint32_t remapped_page = PAGE(chip->block_map[BLOCK(page)]) + PAGE_IN_BLOCK(page);
+
+ ASSERT(size <= CONFIG_MT29F_DATA_SIZE);
+
+ if (page != remapped_page)
+ LOG_INFO("mt29f_write: remapped block: blk %d->%d, pg %ld->%ld\n",
+ BLOCK(page), chip->block_map[BLOCK(page)], page, remapped_page);
+
+ // Data
+ memset(nand_buf, 0xff, MT29F_PAGE_SIZE);
+ memcpy(nand_buf, buf, size);
+ if (!mt29f_writePage(chip, remapped_page, 0))
+ return false;
+
+ // ECC
+ memset(nand_buf, 0xff, CONFIG_MT29F_SPARE_SIZE);
+ mt29f_computeEcc(chip, buf, size, nand_buf, MT29F_ECC_NWORDS);
+
+ // Remap info
+ remap_info.tag = MT29F_REMAP_TAG;
+ remap_info.mapped_blk = BLOCK(page);
+ memcpy((char *)nand_buf + MT29F_REMAP_TAG_OFFSET, &remap_info, sizeof(remap_info));
+
+ return mt29f_writePage(chip, remapped_page, CONFIG_MT29F_DATA_SIZE);
+}
+
+
+/*
+ * Check if the given block is marked bad: ONFI standard mandates
+ * that bad block are marked with "00" bytes on the spare area of the
+ * first page in block.
+ */
+static bool blockIsGood(Mt29f *chip, uint16_t blk)
+{
+ uint8_t *first_byte = (uint8_t *)mt29f_dataBuffer(chip);
+ bool good;
+
+ // Check first byte in spare area of first page in block
+ mt29f_readPage(chip, PAGE(blk), CONFIG_MT29F_DATA_SIZE);
+ good = *first_byte != 0;
+
+ if (!good)
+ LOG_INFO("mt29f: bad block %d\n", blk);
+
+ return good;
+}
+
+
+/*
+ * Return the main partition block remapped on given block in the remap
+ * partition (dest_blk).
+ */
+static int getBadBlockFromRemapBlock(Mt29f *chip, uint16_t dest_blk)
+{
+ struct RemapInfo *remap_info = (struct RemapInfo *)mt29f_dataBuffer(chip);
+
+ if (!mt29f_readPage(chip, PAGE(dest_blk), CONFIG_MT29F_DATA_SIZE + MT29F_REMAP_TAG_OFFSET))
+ return -1;
+
+ if (remap_info->tag == MT29F_REMAP_TAG)
+ return remap_info->mapped_blk;
+ else
+ return -1;
+}
+
+
+/*
+ * Set a block remapping: src_blk (a block in main data partition) is remappend
+ * on dest_blk (block in reserved remapped blocks partition).
+ */
+static bool setMapping(Mt29f *chip, uint32_t src_blk, uint32_t dest_blk)
+{
+ struct RemapInfo *remap_info = (struct RemapInfo *)mt29f_dataBuffer(chip);
+
+ LOG_INFO("mt29f, setMapping(): src=%ld dst=%ld\n", src_blk, dest_blk);
+
+ if (!mt29f_readPage(chip, PAGE(dest_blk), CONFIG_MT29F_DATA_SIZE + MT29F_REMAP_TAG_OFFSET))
+ return false;
+
+ remap_info->tag = MT29F_REMAP_TAG;
+ remap_info->mapped_blk = src_blk;
+
+ return mt29f_writePage(chip, PAGE(dest_blk), CONFIG_MT29F_DATA_SIZE + MT29F_REMAP_TAG_OFFSET);
+}
+
+
+/*
+ * Get a new block from the remap partition to use as a substitute
+ * for a bad block.
+ */
+static uint16_t getFreeRemapBlock(Mt29f *chip)
+{
+ int blk;
+
+ for (blk = chip->remap_start; blk < CONFIG_MT29F_NUM_BLOCK; blk++)
+ {
+ if (blockIsGood(chip, blk))
+ {
+ chip->remap_start = blk + 1;
+ return blk;
+ }
+ }
+
+ LOG_ERR("mt29f: reserved blocks for bad block remapping exhausted!\n");
+ return 0;
+}
+
+
+/*
+ * Check if NAND is initialized.
+ */
+static bool chipIsMarked(Mt29f *chip)
+{
+ return getBadBlockFromRemapBlock(chip, MT29F_NUM_USER_BLOCKS) != -1;
+}
+
+
+/*
+ * Initialize NAND (format). Scan NAND for factory marked bad blocks.
+ * All bad blocks found are remapped to the remap partition: each
+ * block in the remap partition used to remap bad blocks is marked.
+ */
+static void initBlockMap(Mt29f *chip)
+{
+ int b, last;
+
+ // Default is for each block to not be remapped
+ for (b = 0; b < CONFIG_MT29F_NUM_BLOCK; b++)
+ chip->block_map[b] = b;
+ chip->remap_start = MT29F_NUM_USER_BLOCKS;
+
+ if (chipIsMarked(chip))
+ {
+ LOG_INFO("mt29f: found initialized NAND, searching for remapped blocks\n");
+
+ // Scan for assigned blocks in remap area
+ for (b = last = MT29F_NUM_USER_BLOCKS; b < CONFIG_MT29F_NUM_BLOCK; b++)
+ {
+ int remapped_blk = getBadBlockFromRemapBlock(chip, b);
+ if (remapped_blk != -1 && remapped_blk != b)
+ {
+ LOG_INFO("mt29f: found remapped block %d->%d\n", remapped_blk, b);
+ chip->block_map[remapped_blk] = b;
+ last = b + 1;
+ }
+ }
+ chip->remap_start = last;
+ }
+ else
+ {
+ bool remapped_anything = false;
+
+ LOG_INFO("mt29f: found new NAND, searching for bad blocks\n");
+
+ for (b = 0; b < MT29F_NUM_USER_BLOCKS; b++)
+ {
+ if (!blockIsGood(chip, b))
+ {
+ chip->block_map[b] = getFreeRemapBlock(chip);
+ setMapping(chip, b, chip->block_map[b]);
+ remapped_anything = true;
+ LOG_INFO("mt29f: found new bad block %d, remapped to %d\n", b, chip->block_map[b]);
+ }
+ }
+
+ /*
+ * If no bad blocks are found (we're lucky!) write a dummy
+ * remap to mark NAND and detect we already scanned it next time.
+ */
+ if (!remapped_anything)
+ {
+ setMapping(chip, MT29F_NUM_USER_BLOCKS, MT29F_NUM_USER_BLOCKS);
+ LOG_INFO("mt29f: no bad block founds, marked NAND\n");
+ }
+ }
+}
+
+
+/**
+ * Reset bad blocks map and erase all blocks.
+ *
+ * \note DON'T USE on production chips: this function will try to erase
+ * factory marked bad blocks too.
+ */
+void mt29f_format(Mt29f *chip)
+{
+ int b;
+
+ for (b = 0; b < CONFIG_MT29F_NUM_BLOCK; b++)
+ {
+ LOG_INFO("mt29f: erasing block %d\n", b);
+ chip->block_map[b] = b;
+ mt29f_blockErase(chip, b);
+ }
+ chip->remap_start = MT29F_NUM_USER_BLOCKS;
+}
+
+#ifdef _DEBUG
+
+/*
+ * Create some bad blocks, erasing them and writing the bad block mark.
+ */
+void mt29f_ruinSomeBlocks(Mt29f *chip)
+{
+ int bads[] = { 7, 99, 555, 1003, 1004, 1432 };
+ unsigned i;
+
+ LOG_INFO("mt29f: erasing mark\n");
+ mt29f_blockErase(chip, MT29F_NUM_USER_BLOCKS);
+
+ for (i = 0; i < countof(bads); i++)
+ {
+ LOG_INFO("mt29f: erasing block %d\n", bads[i]);
+ mt29f_blockErase(chip, bads[i]);
+
+ LOG_INFO("mt29f: marking page %d as bad\n", PAGE(bads[i]));
+ memset(mt29f_dataBuffer(chip), 0, CONFIG_MT29F_SPARE_SIZE);
+ mt29f_writePage(chip, PAGE(bads[i]), CONFIG_MT29F_DATA_SIZE);
+ }
+}
+
+#endif
+
+static bool commonInit(Mt29f *chip, struct Heap *heap, unsigned chip_select)
+{
+ memset(chip, 0, sizeof(Mt29f));
+
+ DB(chip->fd.priv.type = KBT_NAND);
+ chip->fd.blk_size = MT29F_BLOCK_SIZE;
+ chip->fd.blk_cnt = MT29F_NUM_USER_BLOCKS;
+
+ chip->chip_select = chip_select;
+ chip->block_map = heap_allocmem(heap, CONFIG_MT29F_NUM_BLOCK * sizeof(*chip->block_map));
+ if (!chip->block_map)
+ {
+ LOG_ERR("mt29f: error allocating block map\n");
+ return false;
+ }
+
+ mt29f_hwInit(chip);
+ chipReset(chip);
+ initBlockMap(chip);
+
+ return true;
+}
+
+
+/**************** Kblock interface ****************/
+
+
+static size_t mt29f_writeDirect(struct KBlock *kblk, block_idx_t idx, const void *buf, size_t offset, size_t size)
+{
+ ASSERT(offset <= MT29F_BLOCK_SIZE);
+ ASSERT(offset % CONFIG_MT29F_DATA_SIZE == 0);
+ ASSERT(size <= MT29F_BLOCK_SIZE);
+ ASSERT(size % CONFIG_MT29F_DATA_SIZE == 0);
+
+ //LOG_INFO("mt29f_writeDirect: idx=%ld offset=%d size=%d\n", idx, offset, size);
+
+ mt29f_blockErase(MT29F_CAST(kblk), idx);
+
+ while (offset < size)
+ {
+ uint32_t page = PAGE(idx) + (offset / CONFIG_MT29F_DATA_SIZE);
+
+ if (!mt29f_write(MT29F_CAST(kblk), page, buf, CONFIG_MT29F_DATA_SIZE))
+ break;
+
+ offset += CONFIG_MT29F_DATA_SIZE;
+ buf = (const char *)buf + CONFIG_MT29F_DATA_SIZE;
+ }
+
+ return offset;
+}
+
+
+static size_t mt29f_readDirect(struct KBlock *kblk, block_idx_t idx, void *buf, size_t offset, size_t size)
+{
+ uint32_t page;
+ size_t read_size;
+ size_t read_offset;
+ size_t nread = 0;
+
+ ASSERT(offset < MT29F_BLOCK_SIZE);
+ ASSERT(size <= MT29F_BLOCK_SIZE);
+
+ //LOG_INFO("mt29f_readDirect: idx=%ld offset=%d size=%d\n", idx, offset, size);
+
+ while (nread < size)
+ {
+ page = PAGE(idx) + (offset / CONFIG_MT29F_DATA_SIZE);
+ read_offset = offset % CONFIG_MT29F_DATA_SIZE;
+ read_size = MIN(size, CONFIG_MT29F_DATA_SIZE - read_offset);
+
+ if (!mt29f_read(MT29F_CAST(kblk), page, (char *)buf + nread, read_offset, read_size))
+ break;
+
+ offset += read_size;
+ nread += read_size;
+ }
+
+ return nread;
+}
+
+
+static int mt29f_error(struct KBlock *kblk)
+{
+ Mt29f *chip = MT29F_CAST(kblk);
+ return chip->status;
+}
+
+
+static void mt29f_clearError(struct KBlock *kblk)
+{
+ Mt29f *chip = MT29F_CAST(kblk);
+ chip->status = 0;
+}
+
+
+static const KBlockVTable mt29f_buffered_vt =
+{
+ .readDirect = mt29f_readDirect,
+ .writeDirect = mt29f_writeDirect,
+
+ .readBuf = kblock_swReadBuf,
+ .writeBuf = kblock_swWriteBuf,
+ .load = kblock_swLoad,
+ .store = kblock_swStore,
+
+ .error = mt29f_error,
+ .clearerr = mt29f_clearError,
+};
+
+static const KBlockVTable mt29f_unbuffered_vt =
+{
+ .readDirect = mt29f_readDirect,
+ .writeDirect = mt29f_writeDirect,
+
+ .error = mt29f_error,
+ .clearerr = mt29f_clearError,
+};
+
+
+/**
+ * Initialize NAND kblock driver in buffered mode.
+ */
+bool mt29f_init(Mt29f *chip, struct Heap *heap, unsigned chip_select)
+{
+ if (!commonInit(chip, heap, chip_select))
+ return false;
+
+ chip->fd.priv.vt = &mt29f_buffered_vt;
+ chip->fd.priv.flags |= KB_BUFFERED;
+
+ chip->fd.priv.buf = heap_allocmem(heap, MT29F_BLOCK_SIZE);
+ if (!chip->fd.priv.buf)
+ {
+ LOG_ERR("mt29f: error allocating block buffer\n");
+ return false;
+ }
+
+ // Load the first block in the cache
+ return mt29f_readDirect(&chip->fd, 0, chip->fd.priv.buf, 0, chip->fd.blk_size);
+}
+
+
+/**
+ * Initialize NAND kblock driver in unbuffered mode.
+ */
+bool mt29f_initUnbuffered(Mt29f *chip, struct Heap *heap, unsigned chip_select)
+{
+ if (!commonInit(chip, heap, chip_select))
+ return false;
+
+ chip->fd.priv.vt = &mt29f_unbuffered_vt;
+ return true;
+}
+
*
* \brief Micron MT29F serial NAND driver
*
-* This module allows read/write access to Micron MT29F serial
-* NANDs.
-*
* \author Stefano Fedrigo <aleph@develer.com>
*
* $WIZ$ module_name = "mt29f"
#include <io/kblock.h>
+// Define log settings for cfg/log.h
+#define LOG_LEVEL CONFIG_MT29F_LOG_LEVEL
+#define LOG_FORMAT CONFIG_MT29F_LOG_FORMAT
+
/**
* \name Error codes.
* \{
#define MT29F_ERR_ECC BV(5) ///< Unrecoverable ECC error
/** \} */
+#define MT29F_PAGE_SIZE (CONFIG_MT29F_DATA_SIZE + CONFIG_MT29F_SPARE_SIZE)
+#define MT29F_BLOCK_SIZE (CONFIG_MT29F_DATA_SIZE * CONFIG_MT29F_PAGES_PER_BLOCK)
+
+// Number of usable blocks, and index of first remapping block
+#define MT29F_NUM_USER_BLOCKS (CONFIG_MT29F_NUM_BLOCK - CONFIG_MT29F_NUM_REMAP_BLOCKS)
+
+
+// NAND commands
+#define MT29F_CMD_READ_1 0x00
+#define MT29F_CMD_READ_2 0x30
+#define MT29F_CMD_COPYBACK_READ_1 0x00
+#define MT29F_CMD_COPYBACK_READ_2 0x35
+#define MT29F_CMD_COPYBACK_PROGRAM_1 0x85
+#define MT29F_CMD_COPYBACK_PROGRAM_2 0x10
+#define MT29F_CMD_RANDOM_OUT 0x05
+#define MT29F_CMD_RANDOM_OUT_2 0xE0
+#define MT29F_CMD_RANDOM_IN 0x85
+#define MT29F_CMD_READID 0x90
+#define MT29F_CMD_WRITE_1 0x80
+#define MT29F_CMD_WRITE_2 0x10
+#define MT29F_CMD_ERASE_1 0x60
+#define MT29F_CMD_ERASE_2 0xD0
+#define MT29F_CMD_STATUS 0x70
+#define MT29F_CMD_RESET 0xFF
+
+
+// Get block from page
+#define PAGE(blk) ((blk) * CONFIG_MT29F_PAGES_PER_BLOCK)
+
+// Page from block and page in block
+#define BLOCK(page) ((uint16_t)((page) / CONFIG_MT29F_PAGES_PER_BLOCK))
+#define PAGE_IN_BLOCK(page) ((uint16_t)((page) % CONFIG_MT29F_PAGES_PER_BLOCK))
+
/**
* MT29F context.
void mt29f_ruinSomeBlocks(Mt29f *chip);
#endif
+// Hardware specific functions, implemented by cpu specific module
+bool mt29f_waitReadyBusy(Mt29f *chip, time_t timeout);
+bool mt29f_waitTransferComplete(Mt29f *chip, time_t timeout);
+void mt29f_sendCommand(Mt29f *chip, uint32_t cmd1, uint32_t cmd2,
+ int num_cycles, uint32_t cycle0, uint32_t cycle1234);
+uint8_t mt29f_getChipStatus(Mt29f *chip);
+void *mt29f_dataBuffer(Mt29f *chip);
+bool mt29f_checkEcc(Mt29f *chip);
+void mt29f_computeEcc(Mt29f *chip, const void *buf, size_t size, uint32_t *ecc, size_t ecc_size);
+void mt29f_hwInit(Mt29f *chip);
#endif /* DRV_MT29F_H */