* \author Daniele Basile <asterix@develer.com>
*/
-#include <io/at91sam7s.h>
+#include <io/arm.h>
//#include "ser_at91.h"
#include <drv/ser.h>
#include <hw/hw_ser.h> /* Required for bus macros overrides */
#include <hw/hw_cpu.h> /* CLOCK_FREQ */
-#include <appconfig.h>
#include <mware/fifobuf.h>
-
#include <cfg/debug.h>
-#include <drv/timer.h>
-
-
-//TODO
-#if !CONFIG_SER_HWHANDSHAKE
- /**
- * \name Hardware handshake (RTS/CTS).
- * \{
- */
- #define RTS_ON do {} while (0)
- #define RTS_OFF do {} while (0)
- #define IS_CTS_ON true
- #define EIMSKF_CTS 0 /**< Dummy value, must be overridden */
- /*\}*/
-#endif
-#if CPU_AVR_ATMEGA1281
- #define BIT_RXCIE0 RXCIE0
- #define BIT_RXEN0 RXEN0
- #define BIT_TXEN0 TXEN0
- #define BIT_UDRIE0 UDRIE0
-
- #define BIT_RXCIE1 RXCIE1
- #define BIT_RXEN1 RXEN1
- #define BIT_TXEN1 TXEN1
- #define BIT_UDRIE1 UDRIE1
-#else
- #define BIT_RXCIE0 RXCIE
- #define BIT_RXEN0 RXEN
- #define BIT_TXEN0 TXEN
- #define BIT_UDRIE0 UDRIE
-
- #define BIT_RXCIE1 RXCIE
- #define BIT_RXEN1 RXEN
- #define BIT_TXEN1 TXEN
- #define BIT_UDRIE1 UDRIE
-#endif
+#include <appconfig.h>
/**
*
* \{
*/
-#ifndef SER_UART0_BUS_TXINIT
- /**
- * Default TXINIT macro - invoked in uart0_init()
- *
- * - Enable both the receiver and the transmitter
- * - Enable only the RX complete interrupt
- */
- #define SER_UART0_BUS_TXINIT do { \
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
- } while (0)
-#endif
-
-#ifndef SER_UART0_BUS_TXBEGIN
- /**
- * Invoked before starting a transmission
- *
- * - Enable both the receiver and the transmitter
- * - Enable both the RX complete and UDR empty interrupts
- */
- #define SER_UART0_BUS_TXBEGIN do { \
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_UDRIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
- } while (0)
-#endif
-
-#ifndef SER_UART0_BUS_TXCHAR
- /**
- * Invoked to send one character.
- */
- #define SER_UART0_BUS_TXCHAR(c) do { \
- UDR0 = (c); \
- } while (0)
-#endif
-
-#ifndef SER_UART0_BUS_TXEND
- /**
- * Invoked as soon as the txfifo becomes empty
- *
- * - Keep both the receiver and the transmitter enabled
- * - Keep the RX complete interrupt enabled
- * - Disable the UDR empty interrupt
- */
- #define SER_UART0_BUS_TXEND do { \
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
- } while (0)
-#endif
-#ifndef SER_UART0_BUS_TXOFF
- /**
- * \def SER_UART0_BUS_TXOFF
- *
- * Invoked after the last character has been transmitted
- *
- * The default is no action.
- */
- #ifdef __doxygen__
- #define SER_UART0_BUS_TXOFF
- #endif
-#endif
-
-#ifndef SER_UART1_BUS_TXINIT
- /** \sa SER_UART0_BUS_TXINIT */
- #define SER_UART1_BUS_TXINIT do { \
- UCSR1B = BV(BIT_RXCIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
- } while (0)
-#endif
-#ifndef SER_UART1_BUS_TXBEGIN
- /** \sa SER_UART0_BUS_TXBEGIN */
- #define SER_UART1_BUS_TXBEGIN do { \
- UCSR1B = BV(BIT_RXCIE1) | BV(BIT_UDRIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
- } while (0)
-#endif
-#ifndef SER_UART1_BUS_TXCHAR
- /** \sa SER_UART0_BUS_TXCHAR */
- #define SER_UART1_BUS_TXCHAR(c) do { \
- UDR1 = (c); \
- } while (0)
-#endif
-#ifndef SER_UART1_BUS_TXEND
- /** \sa SER_UART0_BUS_TXEND */
- #define SER_UART1_BUS_TXEND do { \
- UCSR1B = BV(BIT_RXCIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
- } while (0)
-#endif
-#ifndef SER_UART1_BUS_TXOFF
- /**
- * \def SER_UART1_BUS_TXOFF
- *
- * \see SER_UART0_BUS_TXOFF
- */
- #ifdef __doxygen__
- #define SER_UART1_BUS_TXOFF
- #endif
-#endif
-/*\}*/
-
-
-/**
- * \name Overridable SPI hooks
- *
- * These can be redefined in hw.h to implement
- * special bus policies such as slave select pin handling, etc.
- *
- * \{
- */
-#ifndef SER_SPI_BUS_TXINIT
- /**
- * Default TXINIT macro - invoked in spi_init()
- * The default is no action.
- */
- #define SER_SPI_BUS_TXINIT
-#endif
-
-#ifndef SER_SPI_BUS_TXCLOSE
- /**
- * Invoked after the last character has been transmitted.
- * The default is no action.
- */
- #define SER_SPI_BUS_TXCLOSE
-#endif
-/*\}*/
-
-
-/* SPI port and pin configuration */
-#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103 || CPU_AVR_ATMEGA1281
- #define SPI_PORT PORTB
- #define SPI_DDR DDRB
- #define SPI_SS_BIT PB0
- #define SPI_SCK_BIT PB1
- #define SPI_MOSI_BIT PB2
- #define SPI_MISO_BIT PB3
-#elif CPU_AVR_ATMEGA8
- #define SPI_PORT PORTB
- #define SPI_DDR DDRB
- #define SPI_SS_BIT PB2
- #define SPI_SCK_BIT PB5
- #define SPI_MOSI_BIT PB3
- #define SPI_MISO_BIT PB4
-#else
- #error Unknown architecture
-#endif
-
-/* USART register definitions */
-#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA1281
- #define AVR_HAS_UART1 1
-#elif CPU_AVR_ATMEGA8
- #define AVR_HAS_UART1 0
- #define UCSR0A UCSRA
- #define UCSR0B UCSRB
- #define UCSR0C UCSRC
- #define UDR0 UDR
- #define UBRR0L UBRRL
- #define UBRR0H UBRRH
- #define SIG_UART0_DATA SIG_UART_DATA
- #define SIG_UART0_RECV SIG_UART_RECV
- #define SIG_UART0_TRANS SIG_UART_TRANS
-#elif CPU_AVR_ATMEGA103
- #define AVR_HAS_UART1 0
- #define UCSR0B UCR
- #define UDR0 UDR
- #define UCSR0A USR
- #define UBRR0L UBRR
- #define SIG_UART0_DATA SIG_UART_DATA
- #define SIG_UART0_RECV SIG_UART_RECV
- #define SIG_UART0_TRANS SIG_UART_TRANS
-#else
- #error Unknown architecture
-#endif
/**
/* TX and RX buffers */
static unsigned char uart0_txbuffer[CONFIG_UART0_TXBUFSIZE];
static unsigned char uart0_rxbuffer[CONFIG_UART0_RXBUFSIZE];
-#if AVR_HAS_UART1
- static unsigned char uart1_txbuffer[CONFIG_UART1_TXBUFSIZE];
- static unsigned char uart1_rxbuffer[CONFIG_UART1_RXBUFSIZE];
-#endif
-static unsigned char spi_txbuffer[CONFIG_SPI_TXBUFSIZE];
-static unsigned char spi_rxbuffer[CONFIG_SPI_RXBUFSIZE];
-
/**
* Internal hardware state structure
* is done by spi_starttx()). We do this *only* if a transfer is
* not already started.
*/
-struct AvrSerial
+struct ArmSerial
{
struct SerialHardware hw;
volatile bool sending;
* (and hopefully faster) code.
*/
struct Serial *ser_uart0 = &ser_handles[SER_UART0];
-#if AVR_HAS_UART1
-struct Serial *ser_uart1 = &ser_handles[SER_UART1];
-#endif
-struct Serial *ser_spi = &ser_handles[SER_SPI];
-
-
-/*
- * Callbacks
+/**
+ * Serial 0 TX interrupt handler
*/
-static void uart0_init(
- UNUSED_ARG(struct SerialHardware *, _hw),
- UNUSED_ARG(struct Serial *, ser))
+static void serirq_tx(void)
{
- SER_UART0_BUS_TXINIT;
- RTS_ON;
- SER_STROBE_INIT;
-}
-
-static void uart0_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
-{
- UCSR0B = 0;
-}
+ SER_STROBE_ON;
-static void uart0_enabletxirq(struct SerialHardware *_hw)
-{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
+ struct FIFOBuffer * const txfifo = &ser_uart0->txfifo;
- /*
- * WARNING: racy code here! The tx interrupt sets hw->sending to false
- * when it runs with an empty fifo. The order of statements in the
- * if-block matters.
- */
- if (!hw->sending)
+ if (fifo_isempty(txfifo))
{
- hw->sending = true;
- SER_UART0_BUS_TXBEGIN;
+ /* Enable Tx and Rx */
+ US0_CR = BV(US_RXEN) | BV(US_TXEN);
+ }
+ else
+ {
+ char c = fifo_pop(txfifo);
+ /* Send one char */
+ US0_THR = c;
}
+
+ SER_STROBE_OFF;
}
-static void uart0_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
+/**
+ * Serial 0 RX complete interrupt handler.
+ */
+static void serirq_rx(void)
{
- /* Compute baud-rate period */
- uint16_t period = (((CLOCK_FREQ / 16UL) + (rate / 2)) / rate) - 1;
+ SER_STROBE_ON;
-#if !CPU_AVR_ATMEGA103
- UBRR0H = (period) >> 8;
-#endif
- UBRR0L = (period);
+ /* Should be read before UDR */
+ ser_uart0->status |= US0_CSR & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
- //DB(kprintf("uart0_setbaudrate(rate=%lu): period=%d\n", rate, period);)
+ char c = US0_RHR;
+ struct FIFOBuffer * const rxfifo = &ser_uart0->rxfifo;
+
+ if (fifo_isfull(rxfifo))
+ ser_uart0->status |= SERRF_RXFIFOOVERRUN;
+ else
+ {
+ fifo_push(rxfifo, c);
+ }
+
+ SER_STROBE_OFF;
}
-static void uart0_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
+/**
+ * Serial IRQ dispatcher.
+ */
+static void serirq_dispatcher(void) __attribute__ ((naked));
+static void serirq_dispatcher(void)
{
-#if !CPU_AVR_ATMEGA103
- UCSR0C = (UCSR0C & ~(BV(UPM01) | BV(UPM00))) | ((parity) << UPM00);
-#endif
-}
+ IRQ_ENTRY();
-#if AVR_HAS_UART1
+ if (US0_IMR | BV(US_RXRDY))
+ serirq_rx();
-static void uart1_init(
- UNUSED_ARG(struct SerialHardware *, _hw),
- UNUSED_ARG(struct Serial *, ser))
-{
- SER_UART1_BUS_TXINIT;
- RTS_ON;
- SER_STROBE_INIT;
-}
+ if (US0_IMR | BV(US_TXRDY))
+ serirq_tx();
-static void uart1_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
-{
- UCSR1B = 0;
+ IRQ_EXIT();
}
-static void uart1_enabletxirq(struct SerialHardware *_hw)
+/*
+ * Callbacks
+ */
+static void uart0_init(
+ UNUSED_ARG(struct SerialHardware *, _hw),
+ UNUSED_ARG(struct Serial *, ser))
{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
- /*
- * WARNING: racy code here! The tx interrupt
- * sets hw->sending to false when it runs with
- * an empty fifo. The order of the statements
- * in the if-block matters.
- */
- if (!hw->sending)
- {
- hw->sending = true;
- SER_UART1_BUS_TXBEGIN;
- }
-}
+ /* Set the vector. */
+ AIC_SVR(US0_ID) = serirq_dispatcher;
+ /* Initialize to edge triggered with defined priority. */
+ AIC_SMR(US0_ID) = AIC_SRCTYPE_INT_EDGE_TRIGGERED;
+ /* Clear pending interrupt */
+ AIC_ICCR = BV(US0_ID);
+ /* Enable the system IRQ */
+ AIC_IECR = BV(US0_ID);
-static void uart1_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
-{
- /* Compute baud-rate period */
- uint16_t period = (((CLOCK_FREQ / 16UL) + (rate / 2)) / rate) - 1;
+ /* Enable UART clock. */
+ PMC_PCER = BV(US0_ID);
- UBRR1H = (period) >> 8;
- UBRR1L = (period);
+ /* Disable GPIO on UART tx/rx pins. */
+ PIOA_PDR = BV(PA0_RXD0_A) | BV(PA1_TXD0_A);
- //DB(kprintf("uart1_setbaudrate(rate=%ld): period=%d\n", rate, period);)
-}
+ /* Reset UART. */
+ US0_CR = BV(US_RSTRX) | BV(US_RSTTX);
-static void uart1_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
-{
- UCSR1C = (UCSR1C & ~(BV(UPM11) | BV(UPM10))) | ((parity) << UPM10);
-}
+ /* Enable Tx and Rx */
+ US0_CR = BV(US_RXEN) | BV(US_TXEN);
-#endif // AVR_HAS_UART1
+ US0_IER = BV(US_RXRDY);
-static void spi_init(UNUSED_ARG(struct SerialHardware *, _hw), UNUSED_ARG(struct Serial *, ser))
-{
- /*
- * Set MOSI and SCK ports out, MISO in.
- *
- * The ATmega64/128 datasheet explicitly states that the input/output
- * state of the SPI pins is not significant, as when the SPI is
- * active the I/O port are overrided.
- * This is *blatantly FALSE*.
- *
- * Moreover, the MISO pin on the board_kc *must* be in high impedance
- * state even when the SPI is off, because the line is wired together
- * with the KBus serial RX, and the transmitter of the slave boards
- * would be unable to drive the line.
- */
- ATOMIC(SPI_DDR |= (BV(SPI_MOSI_BIT) | BV(SPI_SCK_BIT)));
+ /* enable GPIO on UART tx/rx pins. */
+ PIOA_PER = BV(PA0_RXD0_A) | BV(PA1_TXD0_A);
- /*
- * If the SPI master mode is activated and the SS pin is in input and tied low,
- * the SPI hardware will automatically switch to slave mode!
- * For proper communication this pins should therefore be:
- * - as output
- * - as input but tied high forever!
- * This driver set the pin as output.
- */
- #warning SPI SS pin set as output for proper operation, check schematics for possible conflicts.
- ATOMIC(SPI_DDR |= BV(SPI_SS_BIT));
-
- ATOMIC(SPI_DDR &= ~BV(SPI_MISO_BIT));
- /* Enable SPI, IRQ on, Master */
- SPCR = BV(SPE) | BV(SPIE) | BV(MSTR);
-
- /* Set data order */
- #if CONFIG_SPI_DATA_ORDER == SER_LSB_FIRST
- SPCR |= BV(DORD);
- #endif
-
- /* Set SPI clock rate */
- #if CONFIG_SPI_CLOCK_DIV == 128
- SPCR |= (BV(SPR1) | BV(SPR0));
- #elif (CONFIG_SPI_CLOCK_DIV == 64 || CONFIG_SPI_CLOCK_DIV == 32)
- SPCR |= BV(SPR1);
- #elif (CONFIG_SPI_CLOCK_DIV == 16 || CONFIG_SPI_CLOCK_DIV == 8)
- SPCR |= BV(SPR0);
- #elif (CONFIG_SPI_CLOCK_DIV == 4 || CONFIG_SPI_CLOCK_DIV == 2)
- // SPR0 & SDPR1 both at 0
- #else
- #error Unsupported SPI clock division factor.
- #endif
-
- /* Set SPI2X bit (spi double frequency) */
- #if (CONFIG_SPI_CLOCK_DIV == 128 || CONFIG_SPI_CLOCK_DIV == 64 \
- || CONFIG_SPI_CLOCK_DIV == 16 || CONFIG_SPI_CLOCK_DIV == 4)
- SPSR &= ~BV(SPI2X);
- #elif (CONFIG_SPI_CLOCK_DIV == 32 || CONFIG_SPI_CLOCK_DIV == 8 || CONFIG_SPI_CLOCK_DIV == 2)
- SPSR |= BV(SPI2X);
- #else
- #error Unsupported SPI clock division factor.
- #endif
-
- /* Set clock polarity */
- #if CONFIG_SPI_CLOCK_POL == 1
- SPCR |= BV(CPOL);
- #endif
-
- /* Set clock phase */
- #if CONFIG_SPI_CLOCK_PHASE == 1
- SPCR |= BV(CPHA);
- #endif
- SER_SPI_BUS_TXINIT;
-
- SER_STROBE_INIT;
+ /* Set serial param: mode Normal, 8bit data, 1bit stop */
+ US0_MR |= US_CHMODE_NORMAL | US_CHRL_8 | US_NBSTOP_1;
}
-static void spi_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
+static void uart0_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
{
- SPCR = 0;
-
- SER_SPI_BUS_TXCLOSE;
-
- /* Set all pins as inputs */
- ATOMIC(SPI_DDR &= ~(BV(SPI_MISO_BIT) | BV(SPI_MOSI_BIT) | BV(SPI_SCK_BIT) | BV(SPI_SS_BIT)));
+ US0_CR = BV(US_RSTRX) | BV(US_RSTTX) | BV(US_RXDIS) | BV(US_TXDIS) | BV(US_RSTSTA);
}
-static void spi_starttx(struct SerialHardware *_hw)
+static void uart0_enabletxirq(struct SerialHardware *_hw)
{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
-
- cpuflags_t flags;
- IRQ_SAVE_DISABLE(flags);
+ struct ArmSerial *hw = (struct ArmSerial *)_hw;
- /* Send data only if the SPI is not already transmitting */
- if (!hw->sending && !fifo_isempty(&ser_spi->txfifo))
+ /*
+ * WARNING: racy code here! The tx interrupt sets hw->sending to false
+ * when it runs with an empty fifo. The order of statements in the
+ * if-block matters.
+ */
+ if (!hw->sending)
{
hw->sending = true;
- SPDR = fifo_pop(&ser_spi->txfifo);
+ /* Enable Tx and Rx */
+ US0_CR = BV(US_RXEN) | BV(US_TXEN);
}
-
- IRQ_RESTORE(flags);
}
-static void spi_setbaudrate(
- UNUSED_ARG(struct SerialHardware *, _hw),
- UNUSED_ARG(unsigned long, rate))
+static void uart0_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
{
- // nop
+ /* Compute baud-rate period */
+ US0_BRGR = CLOCK_FREQ / (16 * rate);
+ //DB(kprintf("uart0_setbaudrate(rate=%lu): period=%d\n", rate, period);)
}
-static void spi_setparity(UNUSED_ARG(struct SerialHardware *, _hw), UNUSED_ARG(int, parity))
+static void uart0_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
{
- // nop
+ /* Set UART parity */
+ switch(parity)
+ {
+ case SER_PARITY_NONE:
+ {
+ /* Parity mode. */
+ US0_MR |= US_PAR_MASK;
+ break;
+ }
+ case SER_PARITY_EVEN:
+ {
+ /* Even parity.*/
+ US0_MR |= US_PAR_EVEN;
+ break;
+ }
+ case SER_PARITY_ODD:
+ {
+ /* Odd parity.*/
+ US0_MR |= US_PAR_ODD;
+ break;
+ }
+ }
+
}
static bool tx_sending(struct SerialHardware* _hw)
{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
+ struct ArmSerial *hw = (struct ArmSerial *)_hw;
return hw->sending;
}
-
-
// FIXME: move into compiler.h? Ditch?
#if COMPILER_C99
#define C99INIT(name,val) .name = val
C99INIT(txSending, tx_sending),
};
-#if AVR_HAS_UART1
-static const struct SerialHardwareVT UART1_VT =
-{
- C99INIT(init, uart1_init),
- C99INIT(cleanup, uart1_cleanup),
- C99INIT(setBaudrate, uart1_setbaudrate),
- C99INIT(setParity, uart1_setparity),
- C99INIT(txStart, uart1_enabletxirq),
- C99INIT(txSending, tx_sending),
-};
-#endif // AVR_HAS_UART1
-
-static const struct SerialHardwareVT SPI_VT =
-{
- C99INIT(init, spi_init),
- C99INIT(cleanup, spi_cleanup),
- C99INIT(setBaudrate, spi_setbaudrate),
- C99INIT(setParity, spi_setparity),
- C99INIT(txStart, spi_starttx),
- C99INIT(txSending, tx_sending),
-};
-
-static struct AvrSerial UARTDescs[SER_CNT] =
+static struct ArmSerial UARTDescs[SER_CNT] =
{
{
C99INIT(hw, /**/) {
C99INIT(rxbuffer_size, sizeof(uart0_rxbuffer)),
},
C99INIT(sending, false),
- },
-#if AVR_HAS_UART1
- {
- C99INIT(hw, /**/) {
- C99INIT(table, &UART1_VT),
- C99INIT(txbuffer, uart1_txbuffer),
- C99INIT(rxbuffer, uart1_rxbuffer),
- C99INIT(txbuffer_size, sizeof(uart1_txbuffer)),
- C99INIT(rxbuffer_size, sizeof(uart1_rxbuffer)),
- },
- C99INIT(sending, false),
- },
-#endif
- {
- C99INIT(hw, /**/) {
- C99INIT(table, &SPI_VT),
- C99INIT(txbuffer, spi_txbuffer),
- C99INIT(rxbuffer, spi_rxbuffer),
- C99INIT(txbuffer_size, sizeof(spi_txbuffer)),
- C99INIT(rxbuffer_size, sizeof(spi_rxbuffer)),
- },
- C99INIT(sending, false),
}
};
-
-struct SerialHardware *ser_hw_getdesc(int unit)
-{
- ASSERT(unit < SER_CNT);
- return &UARTDescs[unit].hw;
-}
-
-
-/*
- * Interrupt handlers
- */
-
-#if CONFIG_SER_HWHANDSHAKE
-
-/// This interrupt is triggered when the CTS line goes high
-SIGNAL(SIG_CTS)
-{
- // Re-enable UDR empty interrupt and TX, then disable CTS interrupt
- UCSR0B = BV(RXCIE) | BV(UDRIE) | BV(RXEN) | BV(TXEN);
- EIMSK &= ~EIMSKF_CTS;
-}
-
-#endif // CONFIG_SER_HWHANDSHAKE
-
-
-/**
- * Serial 0 TX interrupt handler
- */
-SIGNAL(USART0_UDRE_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_uart0->txfifo;
-
- if (fifo_isempty(txfifo))
- {
- SER_UART0_BUS_TXEND;
-#ifndef SER_UART0_BUS_TXOFF
- UARTDescs[SER_UART0].sending = false;
-#endif
- }
-#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103
- else if (!IS_CTS_ON)
- {
- // Disable rx interrupt and tx, enable CTS interrupt
- // UNTESTED
- UCSR0B = BV(RXCIE) | BV(RXEN) | BV(TXEN);
- EIFR |= EIMSKF_CTS;
- EIMSK |= EIMSKF_CTS;
- }
-#endif
- else
- {
- char c = fifo_pop(txfifo);
- SER_UART0_BUS_TXCHAR(c);
- }
-
- SER_STROBE_OFF;
-}
-
-#ifdef SER_UART0_BUS_TXOFF
-/**
- * Serial port 0 TX complete interrupt handler.
- *
- * This IRQ is usually disabled. The UDR-empty interrupt
- * enables it when there's no more data to transmit.
- * We need to wait until the last character has been
- * transmitted before switching the 485 transceiver to
- * receive mode.
- *
- * The txfifo might have been refilled by putchar() while
- * we were waiting for the transmission complete interrupt.
- * In this case, we must restart the UDR empty interrupt,
- * otherwise we'd stop the serial port with some data
- * still pending in the buffer.
- */
-SIGNAL(SIG_UART0_TRANS)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_uart0->txfifo;
- if (fifo_isempty(txfifo))
- {
- SER_UART0_BUS_TXOFF;
- UARTDescs[SER_UART0].sending = false;
- }
- else
- UCSR0B = BV(RXCIE) | BV(UDRIE) | BV(RXEN) | BV(TXEN);
-
- SER_STROBE_OFF;
-}
-#endif /* SER_UART0_BUS_TXOFF */
-
-
-#if AVR_HAS_UART1
-
-/**
- * Serial 1 TX interrupt handler
- */
-SIGNAL(USART1_UDRE_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_uart1->txfifo;
-
- if (fifo_isempty(txfifo))
- {
- SER_UART1_BUS_TXEND;
-#ifndef SER_UART1_BUS_TXOFF
- UARTDescs[SER_UART1].sending = false;
-#endif
- }
-#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103
- else if (!IS_CTS_ON)
- {
- // Disable rx interrupt and tx, enable CTS interrupt
- // UNTESTED
- UCSR1B = BV(RXCIE) | BV(RXEN) | BV(TXEN);
- EIFR |= EIMSKF_CTS;
- EIMSK |= EIMSKF_CTS;
- }
-#endif
- else
- {
- char c = fifo_pop(txfifo);
- SER_UART1_BUS_TXCHAR(c);
- }
-
- SER_STROBE_OFF;
-}
-
-#ifdef SER_UART1_BUS_TXOFF
-/**
- * Serial port 1 TX complete interrupt handler.
- *
- * \sa port 0 TX complete handler.
- */
-SIGNAL(SIG_UART1_TRANS)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_uart1->txfifo;
- if (fifo_isempty(txfifo))
- {
- SER_UART1_BUS_TXOFF;
- UARTDescs[SER_UART1].sending = false;
- }
- else
- UCSR1B = BV(RXCIE) | BV(UDRIE) | BV(RXEN) | BV(TXEN);
-
- SER_STROBE_OFF;
-}
-#endif /* SER_UART1_BUS_TXOFF */
-
-#endif // AVR_HAS_UART1
-
-
-/**
- * Serial 0 RX complete interrupt handler.
- *
- * This handler is interruptible.
- * Interrupt are reenabled as soon as recv complete interrupt is
- * disabled. Using INTERRUPT() is troublesome when the serial
- * is heavily loaded, because an interrupt could be retriggered
- * when executing the handler prologue before RXCIE is disabled.
- *
- * \note The code that re-enables interrupts is commented out
- * because in some nasty cases the interrupt is retriggered.
- * This is probably due to the RXC flag being set before
- * RXCIE is cleared. Unfortunately the RXC flag is read-only
- * and can't be cleared by code.
- */
-SIGNAL(USART0_RX_vect)
-{
- SER_STROBE_ON;
-
- /* Disable Recv complete IRQ */
- //UCSR0B &= ~BV(RXCIE);
- //IRQ_ENABLE;
-
- /* Should be read before UDR */
- ser_uart0->status |= UCSR0A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
-
- /* To clear the RXC flag we must _always_ read the UDR even when we're
- * not going to accept the incoming data, otherwise a new interrupt
- * will occur once the handler terminates.
- */
- char c = UDR0;
- struct FIFOBuffer * const rxfifo = &ser_uart0->rxfifo;
-
- if (fifo_isfull(rxfifo))
- ser_uart0->status |= SERRF_RXFIFOOVERRUN;
- else
- {
- fifo_push(rxfifo, c);
-#if CONFIG_SER_HWHANDSHAKE
- if (fifo_isfull(rxfifo))
- RTS_OFF;
-#endif
- }
-
- /* Reenable receive complete int */
- //IRQ_DISABLE;
- //UCSR0B |= BV(RXCIE);
-
- SER_STROBE_OFF;
-}
-
-
-#if AVR_HAS_UART1
-
-/**
- * Serial 1 RX complete interrupt handler.
- *
- * This handler is interruptible.
- * Interrupt are reenabled as soon as recv complete interrupt is
- * disabled. Using INTERRUPT() is troublesome when the serial
- * is heavily loaded, because an interrupt could be retriggered
- * when executing the handler prologue before RXCIE is disabled.
- *
- * \see SIGNAL(USART1_RX_vect)
- */
-SIGNAL(USART1_RX_vect)
-{
- SER_STROBE_ON;
-
- /* Disable Recv complete IRQ */
- //UCSR1B &= ~BV(RXCIE);
- //IRQ_ENABLE;
-
- /* Should be read before UDR */
- ser_uart1->status |= UCSR1A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
-
- /* To avoid an IRQ storm, we must _always_ read the UDR even when we're
- * not going to accept the incoming data
- */
- char c = UDR1;
- struct FIFOBuffer * const rxfifo = &ser_uart1->rxfifo;
- //ASSERT_VALID_FIFO(rxfifo);
-
- if (UNLIKELY(fifo_isfull(rxfifo)))
- ser_uart1->status |= SERRF_RXFIFOOVERRUN;
- else
- {
- fifo_push(rxfifo, c);
-#if CONFIG_SER_HWHANDSHAKE
- if (fifo_isfull(rxfifo))
- RTS_OFF;
-#endif
- }
- /* Re-enable receive complete int */
- //IRQ_DISABLE;
- //UCSR1B |= BV(RXCIE);
-
- SER_STROBE_OFF;
-}
-
-#endif // AVR_HAS_UART1
-
-
-/**
- * SPI interrupt handler
- */
-SIGNAL(SIG_SPI)
-{
- SER_STROBE_ON;
-
- /* Read incoming byte. */
- if (!fifo_isfull(&ser_spi->rxfifo))
- fifo_push(&ser_spi->rxfifo, SPDR);
- /*
- * FIXME
- else
- ser_spi->status |= SERRF_RXFIFOOVERRUN;
- */
-
- /* Send */
- if (!fifo_isempty(&ser_spi->txfifo))
- SPDR = fifo_pop(&ser_spi->txfifo);
- else
- UARTDescs[SER_SPI].sending = false;
-
- SER_STROBE_OFF;
-}