return true;
}
+#ifdef CPU_CM3_SAM3X8
+
+#include <drv/hsmci_sam3.h>
+
+/* SD commands type argument response */
+ /* class 0 */
+/* This is basically the same command as for MMC with some quirks. */
+#define SD_SEND_RELATIVE_ADDR 3 /* bcr R6 */
+#define SD_SEND_IF_COND 8 /* bcr [11:0] See below R7 */
+#define SD_SWITCH_VOLTAGE 11 /* ac R1 */
+
+ /* class 10 */
+#define SD_SWITCH 6 /* adtc [31:0] See below R1 */
+
+ /* class 5 */
+#define SD_ERASE_WR_BLK_START 32 /* ac [31:0] data addr R1 */
+#define SD_ERASE_WR_BLK_END 33 /* ac [31:0] data addr R1 */
+
+ /* Application commands */
+#define SD_APP_SET_BUS_WIDTH 6 /* ac [1:0] bus width R1 */
+#define SD_APP_SD_STATUS 13 /* adtc R1 */
+#define SD_APP_SEND_NUM_WR_BLKS 22 /* adtc R1 */
+#define SD_APP_OP_COND 41 /* bcr [31:0] OCR R3 */
+#define SD_APP_SEND_SCR 51 /* adtc R1 */
+
+/* OCR bit definitions */
+#define SD_OCR_S18R (1 << 24) /* 1.8V switching request */
+#define SD_ROCR_S18A SD_OCR_S18R /* 1.8V switching accepted by card */
+#define SD_OCR_XPC (1 << 28) /* SDXC power control */
+
+/*
+ * SD_SWITCH argument format:
+ *
+ * [31] Check (0) or switch (1)
+ * [30:24] Reserved (0)
+ * [23:20] Function group 6
+ * [19:16] Function group 5
+ * [15:12] Function group 4
+ * [11:8] Function group 3
+ * [7:4] Function group 2
+ * [3:0] Function group 1
+ */
+
+/*
+ * SD_SEND_IF_COND argument format:
+ *
+ * [31:12] Reserved (0)
+ * [11:8] Host Voltage Supply Flags
+ * [7:0] Check Pattern (0xAA)
+ */
+
+/*
+ * SCR field definitions
+ */
+
+#define SCR_SPEC_VER_0 0 /* Implements system specification 1.0 - 1.01 */
+#define SCR_SPEC_VER_1 1 /* Implements system specification 1.10 */
+#define SCR_SPEC_VER_2 2 /* Implements system specification 2.00-3.0X */
+
+#define UNSTUFF_BITS(resp, start, size) \
+ ({ \
+ const uint32_t __size = size; \
+ const uint32_t __mask = (__size < 32 ? 1 << __size : 0) - 1; \
+ const uint32_t __off = 3 - ((start) / 32); \
+ const uint32_t __shft = (start) & 31; \
+ uint32_t __res; \
+ \
+ __res = resp[__off] >> __shft; \
+ if (__size + __shft > 32) \
+ __res |= resp[__off-1] << ((32 - __shft) % 32); \
+ __res & __mask; \
+ })
+
+
+#define BCD_TO_INT_32BIT(bcd) ((uint32_t )((bcd) & 0xf) * 1 + \
+ (((bcd) >> 4) & 0xf) * 10 + \
+ (((bcd) >> 8) & 0xf) * 100 + \
+ (((bcd) >> 12) & 0xf) * 1000 + \
+ (((bcd) >> 16) & 0xf) * 10000 + \
+ (((bcd) >> 20) & 0xf) * 100000 + \
+ (((bcd) >> 24) & 0xf) * 1000000 + \
+ (((bcd) >> 28) & 0xf) * 10000000) \
+
+
+static void dump(uint32_t *r, size_t len)
+{
+ ASSERT(r);
+ kputs("r [ ");
+ for (size_t i = 0; i < len; i++)
+ kprintf("%lx ", r[i]);
+ kputs("]\n");
+}
+
+
+int sd_decode_csd(SDcsd *csd, uint32_t *resp, size_t len)
+{
+ ASSERT(csd);
+ ASSERT(resp);
+ ASSERT(len >= 4);
+
+ csd->structure = UNSTUFF_BITS(resp, 126, 2);
+ csd->ccc = UNSTUFF_BITS(resp, 84, 12);
+
+ if (csd->structure == 0)
+ {
+ kprintf("csize %ld\n", UNSTUFF_BITS(resp, 62, 12));
+ kprintf("csize_mul %ld\n", UNSTUFF_BITS(resp, 47, 3));
+ kprintf("bit read %ld %ld\n", csd->read_blk_bits = UNSTUFF_BITS(resp, 80, 4), csd->read_blk_bits);
+
+ // (C_size + 1) x 2^(C_SIZE_MUL+2)
+ csd->blk_num = (1 + UNSTUFF_BITS(resp, 62, 12)) << (UNSTUFF_BITS(resp, 47, 3) + 2);
+
+ csd->read_blk_bits = UNSTUFF_BITS(resp, 80, 4);
+ csd->write_blk_bits = UNSTUFF_BITS(resp, 22, 4);
+
+ csd->blk_len = 1 << csd->read_blk_bits;
+ csd->capacity = csd->blk_num * csd->blk_len;
+
+ csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
+ csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
+
+ csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
+ csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
+
+ if (UNSTUFF_BITS(resp, 46, 1))
+ {
+ csd->erase_size = 1;
+ }
+ else if(csd->write_blk_bits >= 9)
+ {
+ csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
+ csd->erase_size <<= csd->write_blk_bits - 9;
+ }
+
+ return 0;
+ }
+ else if (csd->structure == 1)
+ {
+ kprintf("csize %ld\n", UNSTUFF_BITS(resp, 48, 22));
+ csd->capacity = (1 + UNSTUFF_BITS(resp, 48, 22)) << 10;
+
+ csd->write_blk_bits = 9;
+ csd->write_partial = 0;
+ csd->write_misalign = 0;
+
+ csd->read_blk_bits = 9;
+ csd->read_partial = 0;
+ csd->read_misalign = 0;
+
+ csd->erase_size = 1;
+ // the block size if fixed to 512kb
+ csd->blk_len = (1 << csd->write_blk_bits) << 10;
+
+ return 0;
+ }
+ else
+ {
+ kprintf("Unrecognised CSD structure version %d\n", csd->structure);
+ return -1;
+ }
+
+ return 0;
+}
+
+
+void sd_dump_csd(SDcsd *csd)
+{
+ ASSERT(csd);
+
+ kprintf("VERSION: %d.0\n", csd->structure ? 2 : 1);
+ kprintf("CARD COMMAND CLASS: %d\n", csd->ccc);
+ kprintf("WRITE BLK LEN BITS: %ld\n", csd->write_blk_bits);
+ kprintf("READ BLK LEN BITS: %ld\n", csd->read_blk_bits);
+ kprintf("ERASE SIZE: %ld\n", csd->erase_size);
+ kprintf("BLK NUM: %ld\n", csd->blk_num);
+ kprintf("BLK LEN: %ld\n", csd->blk_len);
+ kprintf("CAPACITY %ld\n", csd->capacity);
+ kprintf("FLAG Write: WP %d, W MISALIGN %d\n", csd->write_partial, csd->write_misalign);
+ kprintf("FLAG Read: RP %d, R MISALIGN %d\n", csd->read_partial, csd->read_misalign);
+
+}
+
+
+void sd_decode_cid(SDcid *cid, uint32_t *resp, size_t len)
+{
+ ASSERT(cid);
+ ASSERT(resp);
+ ASSERT(len >= 4);
+
+ cid->manfid = UNSTUFF_BITS(resp, 120, 8);
+ cid->oemid = UNSTUFF_BITS(resp, 104, 16);
+ cid->prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
+ cid->prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
+ cid->prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
+ cid->prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
+ cid->prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
+ cid->m_rev = UNSTUFF_BITS(resp, 60, 4);
+ cid->l_rev = UNSTUFF_BITS(resp, 56, 4);
+ cid->serial = UNSTUFF_BITS(resp, 24, 32);
+ cid->year_off = UNSTUFF_BITS(resp, 8, 12);
+}
+
+void sd_dump_cid(SDcid *cid)
+{
+ ASSERT(cid);
+
+ kprintf("MANFID: %d\n", cid->manfid);
+ kprintf("OEMID: %d\n", cid->oemid);
+ kprintf("SERIAL: %ld\n", cid->serial);
+ kprintf("PROD_NAME: %s\n", cid->prod_name);
+ kprintf("REV: %d.%d\n", cid->m_rev, cid->l_rev);
+ kprintf("OFF,Y,M: %lx, %ld\n", cid->year_off, BCD_TO_INT_32BIT(cid->year_off));
+}
+
+void sd_send_init(void)
+{
+ if (hsmci_sendCmd(0, 0, HSMCI_CMDR_SPCMD_INIT | HSMCI_CMDR_RSPTYP_NORESP))
+ kprintf("INIT Errore %lx\n", HSMCI_SR);
+}
+
+
+void sd_go_idle(void)
+{
+ for (int i = 0; i < 10; i++)
+ if (hsmci_sendCmd(0, 0, HSMCI_CMDR_RSPTYP_NORESP))
+ kprintf("0 Errore %lx\n", HSMCI_SR);
+}
+
+int sd_send_if_cond(void)
+{
+ if (hsmci_sendCmd(8, CMD8_V_RANGE_27V_36V, HSMCI_CMDR_RSPTYP_48_BIT))
+ {
+ kprintf("8 Errore %lx\n", HSMCI_SR);
+ return -1;
+ }
+ else
+ {
+ uint32_t r = HSMCI_RSPR;
+ if ((r & 0xFFF) == CMD8_V_RANGE_27V_36V)
+ {
+ kprintf("8 ok: %lx\n", r);
+ return 0;
+ }
+ kprintf("8 ko: %lx\n", r);
+ }
+ return -1;
+}
+
+int sd_send_app_op_cond(void)
+{
+ for (int i = 0; i < 10; i++)
+ {
+
+ if (hsmci_sendCmd(55, 0, HSMCI_CMDR_RSPTYP_48_BIT))
+ {
+ kprintf("55 Errore %lx\n", HSMCI_SR);
+ return -1;
+ }
+ else
+ {
+ kprintf("55 Risposta %lx\n", HSMCI_RSPR);
+ }
+
+ if (hsmci_sendCmd(41, SD_HOST_VOLTAGE_RANGE | SD_OCR_CCS, HSMCI_CMDR_RSPTYP_48_BIT))// se cmd 8 va ok.
+ //if (hsmci_sendCmd(41, SD_HOST_VOLTAGE_RANGE, HSMCI_CMDR_RSPTYP_48_BIT))
+ {
+ kprintf("41 Errore %lx\n", HSMCI_SR);
+ return -1;
+ }
+ else
+ {
+ if (HSMCI_RSPR & SD_OCR_BUSY)
+ {
+ kputs("sd power up!\n");
+ return 0;
+ }
+
+ kputs("sd not ready.\n");
+ continue;
+ }
+
+ timer_delay(10);
+ }
+ return -1;
+}
+
+int sd_get_cid(uint32_t *resp, size_t len)
+{
+ if (hsmci_sendCmd(2, 0, HSMCI_CMDR_RSPTYP_136_BIT))
+ {
+ kprintf("2 Errore %lx\n", HSMCI_SR);
+ return -1;
+ }
+ else
+ {
+ hsmci_readResp(resp, len);
+ dump(resp, len);
+ }
+
+ return 0;
+}
+
+int sd_get_csd(uint32_t *resp, size_t len)
+{
+ if (hsmci_sendCmd(9, 0, HSMCI_CMDR_RSPTYP_136_BIT))
+ {
+ kprintf("9 Errore %lx\n", HSMCI_SR);
+ return -1;
+ }
+ else
+ {
+ hsmci_readResp(resp, len);
+ dump(resp, len);
+ }
+ return 0;
+}
+
+int sd_app_status(void)
+{
+ if (hsmci_sendCmd(13, 0, HSMCI_CMDR_RSPTYP_48_BIT))
+ {
+ kprintf("13 Errore %lx\n", HSMCI_SR);
+ return -1;
+ }
+ else
+ {
+ uint32_t status = HSMCI_RSPR;
+ kprintf("13 r: %lx\n", status);
+ if (status & SD_OCR_BUSY)
+ return 1;
+ }
+ return 0;
+}
+
+#endif
+
+
bool sd_initUnbuf(Sd *sd, KFile *ch)
{
if (sd_blockInit(sd, ch))
return false;
}
+
+