+++ /dev/null
-/**
- * \file
- * <!--
- * This file is part of BeRTOS.
- *
- * Bertos is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * As a special exception, you may use this file as part of a free software
- * library without restriction. Specifically, if other files instantiate
- * templates or use macros or inline functions from this file, or you compile
- * this file and link it with other files to produce an executable, this
- * file does not by itself cause the resulting executable to be covered by
- * the GNU General Public License. This exception does not however
- * invalidate any other reasons why the executable file might be covered by
- * the GNU General Public License.
- *
- * Copyright 2003, 2004, 2010 Develer S.r.l. (http://www.develer.com/)
- * Copyright 2000 Bernie Innocenti <bernie@codewiz.org>
- *
- * -->
- *
- * \brief AVR UART and SPI I/O driver (Implementation)
- *
- * \author Bernie Innocenti <bernie@codewiz.org>
- * \author Stefano Fedrigo <aleph@develer.com>
- * \author Luca Ottaviano <lottaviano@develer.com>
- */
-
-#include "hw/hw_ser.h" /* Required for bus macros overrides */
-#include <hw/hw_cpufreq.h> /* CPU_FREQ */
-
-#include "cfg/cfg_ser.h"
-
-#include <cfg/macros.h> /* DIV_ROUND */
-#include <cfg/debug.h>
-#include <cfg/cfg_arch.h> // ARCH_NIGHTTEST
-
-#include <drv/ser.h>
-#include <drv/ser_p.h>
-#include <drv/timer.h>
-
-#include <struct/fifobuf.h>
-
-#include <avr/io.h>
-
-#if defined(__AVR_LIBC_VERSION__) && (__AVR_LIBC_VERSION__ >= 10400UL)
- #include <avr/interrupt.h>
-#else
- #include <avr/signal.h>
-#endif
-
-
-#if !CONFIG_SER_HWHANDSHAKE
- /**
- * \name Hardware handshake (RTS/CTS).
- * \{
- */
- #define RTS_ON do {} while (0)
- #define RTS_OFF do {} while (0)
- #define IS_CTS_ON true
- #define EIMSKF_CTS 0 /**< Dummy value, must be overridden */
- /*\}*/
-#endif
-
-#if CPU_AVR_ATMEGA1281 || CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
- #define BIT_RXCIE0 RXCIE0
- #define BIT_RXEN0 RXEN0
- #define BIT_TXEN0 TXEN0
- #define BIT_UDRIE0 UDRIE0
-
- #define BIT_RXCIE1 RXCIE1
- #define BIT_RXEN1 RXEN1
- #define BIT_TXEN1 TXEN1
- #define BIT_UDRIE1 UDRIE1
- #if CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
- #define BIT_RXCIE2 RXCIE2
- #define BIT_RXEN2 RXEN2
- #define BIT_TXEN2 TXEN2
- #define BIT_UDRIE2 UDRIE2
-
- #define BIT_RXCIE3 RXCIE3
- #define BIT_RXEN3 RXEN3
- #define BIT_TXEN3 TXEN3
- #define BIT_UDRIE3 UDRIE3
- #endif
-#elif CPU_AVR_ATMEGA168 || CPU_AVR_ATMEGA328P
- #define BIT_RXCIE0 RXCIE0
- #define BIT_RXEN0 RXEN0
- #define BIT_TXEN0 TXEN0
- #define BIT_UDRIE0 UDRIE0
-
- #define BIT_RXCIE1 RXCIE0
- #define BIT_RXEN1 RXEN0
- #define BIT_TXEN1 TXEN0
- #define BIT_UDRIE1 UDRIE0
-#else
- #define BIT_RXCIE0 RXCIE
- #define BIT_RXEN0 RXEN
- #define BIT_TXEN0 TXEN
- #define BIT_UDRIE0 UDRIE
-
- #define BIT_RXCIE1 RXCIE
- #define BIT_RXEN1 RXEN
- #define BIT_TXEN1 TXEN
- #define BIT_UDRIE1 UDRIE
-#endif
-
-
-/**
- * \name Overridable serial bus hooks
- *
- * These can be redefined in hw.h to implement
- * special bus policies such as half-duplex, 485, etc.
- *
- *
- * \code
- * TXBEGIN TXCHAR TXEND TXOFF
- * | __________|__________ | |
- * | | | | | | | | |
- * v v v v v v v v v
- * ______ __ __ __ __ __ __ ________________
- * \/ \/ \/ \/ \/ \/ \/
- * ______/\__/\__/\__/\__/\__/\__/
- *
- * \endcode
- *
- * \{
- */
-#ifndef SER_UART0_BUS_TXINIT
- /**
- * Default TXINIT macro - invoked in uart0_init()
- *
- * - Enable both the receiver and the transmitter
- * - Enable only the RX complete interrupt
- */
- #define SER_UART0_BUS_TXINIT do { \
- UCSR0A = 0; /* The Arduino Uno bootloader turns on U2X0 */ \
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
- } while (0)
-#endif
-
-#ifndef SER_UART0_BUS_TXBEGIN
- /**
- * Invoked before starting a transmission
- *
- * - Enable both the receiver and the transmitter
- * - Enable both the RX complete and UDR empty interrupts
- */
- #define SER_UART0_BUS_TXBEGIN do { \
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_UDRIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
- } while (0)
-#endif
-
-#ifndef SER_UART0_BUS_TXCHAR
- /**
- * Invoked to send one character.
- */
- #define SER_UART0_BUS_TXCHAR(c) do { \
- UDR0 = (c); \
- } while (0)
-#endif
-
-#ifndef SER_UART0_BUS_TXEND
- /**
- * Invoked as soon as the txfifo becomes empty
- *
- * - Keep both the receiver and the transmitter enabled
- * - Keep the RX complete interrupt enabled
- * - Disable the UDR empty interrupt
- */
- #define SER_UART0_BUS_TXEND do { \
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
- } while (0)
-#endif
-
-#ifndef SER_UART0_BUS_TXOFF
- /**
- * \def SER_UART0_BUS_TXOFF
- *
- * Invoked after the last character has been transmitted
- *
- * The default is no action.
- */
- #ifdef __doxygen__
- #define SER_UART0_BUS_TXOFF
- #endif
-#endif
-
-#ifndef SER_UART1_BUS_TXINIT
- /** \sa SER_UART0_BUS_TXINIT */
- #define SER_UART1_BUS_TXINIT do { \
- UCSR1B = BV(BIT_RXCIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
- } while (0)
-#endif
-#ifndef SER_UART1_BUS_TXBEGIN
- /** \sa SER_UART0_BUS_TXBEGIN */
- #define SER_UART1_BUS_TXBEGIN do { \
- UCSR1B = BV(BIT_RXCIE1) | BV(BIT_UDRIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
- } while (0)
-#endif
-#ifndef SER_UART1_BUS_TXCHAR
- /** \sa SER_UART0_BUS_TXCHAR */
- #define SER_UART1_BUS_TXCHAR(c) do { \
- UDR1 = (c); \
- } while (0)
-#endif
-#ifndef SER_UART1_BUS_TXEND
- /** \sa SER_UART0_BUS_TXEND */
- #define SER_UART1_BUS_TXEND do { \
- UCSR1B = BV(BIT_RXCIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
- } while (0)
-#endif
-#ifndef SER_UART1_BUS_TXOFF
- /**
- * \def SER_UART1_BUS_TXOFF
- *
- * \see SER_UART0_BUS_TXOFF
- */
- #ifdef __doxygen__
- #define SER_UART1_BUS_TXOFF
- #endif
-#endif
-
-#ifndef SER_UART2_BUS_TXINIT
- /** \sa SER_UART0_BUS_TXINIT */
- #define SER_UART2_BUS_TXINIT do { \
- UCSR2B = BV(BIT_RXCIE2) | BV(BIT_RXEN2) | BV(BIT_TXEN2); \
- } while (0)
-#endif
-#ifndef SER_UART2_BUS_TXBEGIN
- /** \sa SER_UART0_BUS_TXBEGIN */
- #define SER_UART2_BUS_TXBEGIN do { \
- UCSR2B = BV(BIT_RXCIE2) | BV(BIT_UDRIE2) | BV(BIT_RXEN2) | BV(BIT_TXEN2); \
- } while (0)
-#endif
-#ifndef SER_UART2_BUS_TXCHAR
- /** \sa SER_UART0_BUS_TXCHAR */
- #define SER_UART2_BUS_TXCHAR(c) do { \
- UDR2 = (c); \
- } while (0)
-#endif
-#ifndef SER_UART2_BUS_TXEND
- /** \sa SER_UART0_BUS_TXEND */
- #define SER_UART2_BUS_TXEND do { \
- UCSR2B = BV(BIT_RXCIE2) | BV(BIT_RXEN2) | BV(BIT_TXEN2); \
- } while (0)
-#endif
-#ifndef SER_UART2_BUS_TXOFF
- /**
- * \def SER_UART2_BUS_TXOFF
- *
- * \see SER_UART0_BUS_TXOFF
- */
- #ifdef __doxygen__
- #define SER_UART2_BUS_TXOFF
- #endif
-#endif
-
-#ifndef SER_UART3_BUS_TXINIT
- /** \sa SER_UART0_BUS_TXINIT */
- #define SER_UART3_BUS_TXINIT do { \
- UCSR3B = BV(BIT_RXCIE3) | BV(BIT_RXEN3) | BV(BIT_TXEN3); \
- } while (0)
-#endif
-#ifndef SER_UART3_BUS_TXBEGIN
- /** \sa SER_UART0_BUS_TXBEGIN */
- #define SER_UART3_BUS_TXBEGIN do { \
- UCSR3B = BV(BIT_RXCIE3) | BV(BIT_UDRIE3) | BV(BIT_RXEN3) | BV(BIT_TXEN3); \
- } while (0)
-#endif
-#ifndef SER_UART3_BUS_TXCHAR
- /** \sa SER_UART0_BUS_TXCHAR */
- #define SER_UART3_BUS_TXCHAR(c) do { \
- UDR3 = (c); \
- } while (0)
-#endif
-#ifndef SER_UART3_BUS_TXEND
- /** \sa SER_UART0_BUS_TXEND */
- #define SER_UART3_BUS_TXEND do { \
- UCSR3B = BV(BIT_RXCIE3) | BV(BIT_RXEN3) | BV(BIT_TXEN3); \
- } while (0)
-#endif
-#ifndef SER_UART3_BUS_TXOFF
- /**
- * \def SER_UART3_BUS_TXOFF
- *
- * \see SER_UART0_BUS_TXOFF
- */
- #ifdef __doxygen__
- #define SER_UART3_BUS_TXOFF
- #endif
-#endif
-/*\}*/
-
-
-/**
- * \name Overridable SPI hooks
- *
- * These can be redefined in hw.h to implement
- * special bus policies such as slave select pin handling, etc.
- *
- * \{
- */
-#ifndef SER_SPI_BUS_TXINIT
- /**
- * Default TXINIT macro - invoked in spi_init()
- * The default is no action.
- */
- #define SER_SPI_BUS_TXINIT
-#endif
-
-#ifndef SER_SPI_BUS_TXCLOSE
- /**
- * Invoked after the last character has been transmitted.
- * The default is no action.
- */
- #define SER_SPI_BUS_TXCLOSE
-#endif
-/*\}*/
-
-
-/* SPI port and pin configuration */
-#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103 || CPU_AVR_ATMEGA1281 \
- || CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
- #define SPI_PORT PORTB
- #define SPI_DDR DDRB
- #define SPI_SS_BIT PB0
- #define SPI_SCK_BIT PB1
- #define SPI_MOSI_BIT PB2
- #define SPI_MISO_BIT PB3
-// TODO: these bits are the same as ATMEGA8 but the defines in avr-gcc are different.
-// They should be the same!
-#elif CPU_AVR_ATMEGA328P
- #define SPI_PORT PORTB
- #define SPI_DDR DDRB
- #define SPI_SS_BIT PORTB2
- #define SPI_SCK_BIT PORTB5
- #define SPI_MOSI_BIT PORTB3
- #define SPI_MISO_BIT PORTB4
-#elif CPU_AVR_ATMEGA8 || CPU_AVR_ATMEGA168
- #define SPI_PORT PORTB
- #define SPI_DDR DDRB
- #define SPI_SS_BIT PB2
- #define SPI_SCK_BIT PB5
- #define SPI_MOSI_BIT PB3
- #define SPI_MISO_BIT PB4
-#elif CPU_AVR_ATMEGA32
- #define SPI_PORT PORTB
- #define SPI_DDR DDRB
- #define SPI_SS_BIT PB4
- #define SPI_SCK_BIT PB7
- #define SPI_MOSI_BIT PB5
- #define SPI_MISO_BIT PB6
-#else
- #error Unknown architecture
-#endif
-
-/* USART register definitions */
-#if CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
- #define AVR_HAS_UART1 1
- #define AVR_HAS_UART2 1
- #define AVR_HAS_UART3 1
-#elif CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA1281
- #define AVR_HAS_UART1 1
- #define AVR_HAS_UART2 0
- #define AVR_HAS_UART3 0
-#elif CPU_AVR_ATMEGA168 || CPU_AVR_ATMEGA328P
- #define AVR_HAS_UART1 0
- #define AVR_HAS_UART2 0
- #define AVR_HAS_UART3 0
- #define USART0_UDRE_vect USART_UDRE_vect
- #define USART0_RX_vect USART_RX_vect
- #define USART0_TX_vect USART_TX_vect
-#elif CPU_AVR_ATMEGA8 || CPU_AVR_ATMEGA32
- #define AVR_HAS_UART1 0
- #define AVR_HAS_UART2 0
- #define AVR_HAS_UART3 0
- #define UCSR0A UCSRA
- #define UCSR0B UCSRB
- #define UCSR0C UCSRC
- #define UDR0 UDR
- #define UBRR0L UBRRL
- #define UBRR0H UBRRH
- #define UPM01 UPM1
- #define UPM00 UPM0
- #define USART0_UDRE_vect USART_UDRE_vect
- #define USART0_RX_vect USART_RXC_vect
- #define USART0_TX_vect USART_TXC_vect
-#elif CPU_AVR_ATMEGA103
- #define AVR_HAS_UART1 0
- #define AVR_HAS_UART2 0
- #define AVR_HAS_UART3 0
- #define UCSR0B UCR
- #define UDR0 UDR
- #define UCSR0A USR
- #define UBRR0L UBRR
- #define USART0_UDRE_vect USART_UDRE_vect
- #define USART0_RX_vect USART_RX_vect
- #define USART0_TX_vect USART_TX_vect
-#else
- #error Unknown architecture
-#endif
-
-
-/* From the high-level serial driver */
-extern struct Serial *ser_handles[SER_CNT];
-
-/* TX and RX buffers */
-static unsigned char uart0_txbuffer[CONFIG_UART0_TXBUFSIZE];
-static unsigned char uart0_rxbuffer[CONFIG_UART0_RXBUFSIZE];
-#if AVR_HAS_UART1
- static unsigned char uart1_txbuffer[CONFIG_UART1_TXBUFSIZE];
- static unsigned char uart1_rxbuffer[CONFIG_UART1_RXBUFSIZE];
-#endif
-#if AVR_HAS_UART2
- static unsigned char uart2_txbuffer[CONFIG_UART2_TXBUFSIZE];
- static unsigned char uart2_rxbuffer[CONFIG_UART2_RXBUFSIZE];
-#endif
-#if AVR_HAS_UART3
- static unsigned char uart3_txbuffer[CONFIG_UART3_TXBUFSIZE];
- static unsigned char uart3_rxbuffer[CONFIG_UART3_RXBUFSIZE];
-#endif
-static unsigned char spi_txbuffer[CONFIG_SPI_TXBUFSIZE];
-static unsigned char spi_rxbuffer[CONFIG_SPI_RXBUFSIZE];
-
-
-/**
- * Internal hardware state structure
- *
- * The \a sending variable is true while the transmission
- * interrupt is retriggering itself.
- *
- * For the USARTs the \a sending flag is useful for taking specific
- * actions before sending a burst of data, at the start of a trasmission
- * but not before every char sent.
- *
- * For the SPI, this flag is necessary because the SPI sends and receives
- * bytes at the same time and the SPI IRQ is unique for send/receive.
- * The only way to start transmission is to write data in SPDR (this
- * is done by spi_starttx()). We do this *only* if a transfer is
- * not already started.
- */
-struct AvrSerial
-{
- struct SerialHardware hw;
- volatile bool sending;
-};
-
-static uint16_t uart_period(unsigned long bps)
-{
- uint16_t period = DIV_ROUND(CPU_FREQ / 16UL, bps) - 1;
-
- #ifdef _DEBUG
- long skew = bps - (long)(period + 1) * (CPU_FREQ / 16);
- /* 8N1 is reliable within 3% skew */
- if ((unsigned long)ABS(skew) > bps / (100 / 3))
- kprintf("Baudrate off by %ldbps\n", skew);
- #endif
-
- //DB(kprintf("uart_period(bps=%lu): period=%u\n", bps, period);)
- return period;
-}
-
-/*
- * Callbacks
- */
-static void uart0_init(
- UNUSED_ARG(struct SerialHardware *, _hw),
- UNUSED_ARG(struct Serial *, ser))
-{
- SER_UART0_BUS_TXINIT;
- RTS_ON;
- SER_STROBE_INIT;
-}
-
-static void uart0_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
-{
- UCSR0B = 0;
-}
-
-static void uart0_enabletxirq(struct SerialHardware *_hw)
-{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
-
- /*
- * WARNING: racy code here! The tx interrupt sets hw->sending to false
- * when it runs with an empty fifo. The order of statements in the
- * if-block matters.
- */
- if (!hw->sending)
- {
- hw->sending = true;
- SER_UART0_BUS_TXBEGIN;
- }
-}
-
-static void uart0_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
-{
- uint16_t period = uart_period(rate);
-
-#if !CPU_AVR_ATMEGA103
- UBRR0H = period >> 8;
-#endif
- UBRR0L = period;
-}
-
-static void uart0_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
-{
-#if !CPU_AVR_ATMEGA103
- UCSR0C = (UCSR0C & ~(BV(UPM01) | BV(UPM00))) | ((parity) << UPM00);
-#endif
-}
-
-#if AVR_HAS_UART1
-
-static void uart1_init(
- UNUSED_ARG(struct SerialHardware *, _hw),
- UNUSED_ARG(struct Serial *, ser))
-{
- SER_UART1_BUS_TXINIT;
- RTS_ON;
- SER_STROBE_INIT;
-}
-
-static void uart1_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
-{
- UCSR1B = 0;
-}
-
-static void uart1_enabletxirq(struct SerialHardware *_hw)
-{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
-
- /*
- * WARNING: racy code here! The tx interrupt
- * sets hw->sending to false when it runs with
- * an empty fifo. The order of the statements
- * in the if-block matters.
- */
- if (!hw->sending)
- {
- hw->sending = true;
- SER_UART1_BUS_TXBEGIN;
- }
-}
-
-static void uart1_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
-{
- uint16_t period = uart_period(rate);
- UBRR1H = period >> 8;
- UBRR1L = period;
-}
-
-static void uart1_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
-{
- UCSR1C = (UCSR1C & ~(BV(UPM11) | BV(UPM10))) | ((parity) << UPM10);
-}
-
-#endif // AVR_HAS_UART1
-
-#if AVR_HAS_UART2
-
-static void uart2_init(
- UNUSED_ARG(struct SerialHardware *, _hw),
- UNUSED_ARG(struct Serial *, ser))
-{
- SER_UART2_BUS_TXINIT;
- RTS_ON;
- SER_STROBE_INIT;
-}
-
-static void uart2_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
-{
- UCSR2B = 0;
-}
-
-static void uart2_enabletxirq(struct SerialHardware *_hw)
-{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
-
- /*
- * WARNING: racy code here! The tx interrupt
- * sets hw->sending to false when it runs with
- * an empty fifo. The order of the statements
- * in the if-block matters.
- */
- if (!hw->sending)
- {
- hw->sending = true;
- SER_UART2_BUS_TXBEGIN;
- }
-}
-
-static void uart2_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
-{
- uint16_t period = uart_period(rate);
- UBRR2H = period >> 8;
- UBRR2L = period;
-}
-
-static void uart2_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
-{
- UCSR2C = (UCSR2C & ~(BV(UPM21) | BV(UPM20))) | ((parity) << UPM20);
-}
-
-#endif // AVR_HAS_UART2
-
-#if AVR_HAS_UART3
-
-static void uart3_init(
- UNUSED_ARG(struct SerialHardware *, _hw),
- UNUSED_ARG(struct Serial *, ser))
-{
- SER_UART3_BUS_TXINIT;
- RTS_ON;
- SER_STROBE_INIT;
-}
-
-static void uart3_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
-{
- UCSR3B = 0;
-}
-
-static void uart3_enabletxirq(struct SerialHardware *_hw)
-{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
-
- /*
- * WARNING: racy code here! The tx interrupt
- * sets hw->sending to false when it runs with
- * an empty fifo. The order of the statements
- * in the if-block matters.
- */
- if (!hw->sending)
- {
- hw->sending = true;
- SER_UART3_BUS_TXBEGIN;
- }
-}
-
-static void uart3_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
-{
- uint16_t period = uart_period(rate);
- UBRR3H = period >> 8;
- UBRR3L = period;
-}
-
-static void uart3_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
-{
- UCSR3C = (UCSR3C & ~(BV(UPM31) | BV(UPM30))) | ((parity) << UPM30);
-}
-
-#endif // AVR_HAS_UART3
-
-
-static void spi_init(UNUSED_ARG(struct SerialHardware *, _hw), UNUSED_ARG(struct Serial *, ser))
-{
- /*
- * Set MOSI and SCK ports out, MISO in.
- *
- * The ATmega64/128 datasheet explicitly states that the input/output
- * state of the SPI pins is not significant, as when the SPI is
- * active the I/O port are overrided.
- * This is *blatantly FALSE*.
- *
- * Moreover, the MISO pin on the board_kc *must* be in high impedance
- * state even when the SPI is off, because the line is wired together
- * with the KBus serial RX, and the transmitter of the slave boards
- * would be unable to drive the line.
- */
- ATOMIC(SPI_DDR |= (BV(SPI_MOSI_BIT) | BV(SPI_SCK_BIT)));
-
- /*
- * If the SPI master mode is activated and the SS pin is in input and tied low,
- * the SPI hardware will automatically switch to slave mode!
- * For proper communication this pins should therefore be:
- * - as output
- * - as input but tied high forever!
- * This driver set the pin as output.
- */
- #warning FIXME:SPI SS pin set as output for proper operation, check schematics for possible conflicts.
- ATOMIC(SPI_DDR |= BV(SPI_SS_BIT));
-
- ATOMIC(SPI_DDR &= ~BV(SPI_MISO_BIT));
- /* Enable SPI, IRQ on, Master */
- SPCR = BV(SPE) | BV(SPIE) | BV(MSTR);
-
- /* Set data order */
- #if CONFIG_SPI_DATA_ORDER == SER_LSB_FIRST
- SPCR |= BV(DORD);
- #endif
-
- /* Set SPI clock rate */
- #if CONFIG_SPI_CLOCK_DIV == 128
- SPCR |= (BV(SPR1) | BV(SPR0));
- #elif (CONFIG_SPI_CLOCK_DIV == 64 || CONFIG_SPI_CLOCK_DIV == 32)
- SPCR |= BV(SPR1);
- #elif (CONFIG_SPI_CLOCK_DIV == 16 || CONFIG_SPI_CLOCK_DIV == 8)
- SPCR |= BV(SPR0);
- #elif (CONFIG_SPI_CLOCK_DIV == 4 || CONFIG_SPI_CLOCK_DIV == 2)
- // SPR0 & SDPR1 both at 0
- #else
- #error Unsupported SPI clock division factor.
- #endif
-
- /* Set SPI2X bit (spi double frequency) */
- #if (CONFIG_SPI_CLOCK_DIV == 128 || CONFIG_SPI_CLOCK_DIV == 64 \
- || CONFIG_SPI_CLOCK_DIV == 16 || CONFIG_SPI_CLOCK_DIV == 4)
- SPSR &= ~BV(SPI2X);
- #elif (CONFIG_SPI_CLOCK_DIV == 32 || CONFIG_SPI_CLOCK_DIV == 8 || CONFIG_SPI_CLOCK_DIV == 2)
- SPSR |= BV(SPI2X);
- #else
- #error Unsupported SPI clock division factor.
- #endif
-
- /* Set clock polarity */
- #if CONFIG_SPI_CLOCK_POL == 1
- SPCR |= BV(CPOL);
- #endif
-
- /* Set clock phase */
- #if CONFIG_SPI_CLOCK_PHASE == 1
- SPCR |= BV(CPHA);
- #endif
- SER_SPI_BUS_TXINIT;
-
- SER_STROBE_INIT;
-}
-
-static void spi_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
-{
- SPCR = 0;
-
- SER_SPI_BUS_TXCLOSE;
-
- /* Set all pins as inputs */
- ATOMIC(SPI_DDR &= ~(BV(SPI_MISO_BIT) | BV(SPI_MOSI_BIT) | BV(SPI_SCK_BIT) | BV(SPI_SS_BIT)));
-}
-
-static void spi_starttx(struct SerialHardware *_hw)
-{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
-
- cpu_flags_t flags;
- IRQ_SAVE_DISABLE(flags);
-
- /* Send data only if the SPI is not already transmitting */
- if (!hw->sending && !fifo_isempty(&ser_handles[SER_SPI]->txfifo))
- {
- hw->sending = true;
- SPDR = fifo_pop(&ser_handles[SER_SPI]->txfifo);
- }
-
- IRQ_RESTORE(flags);
-}
-
-static void spi_setbaudrate(
- UNUSED_ARG(struct SerialHardware *, _hw),
- UNUSED_ARG(unsigned long, rate))
-{
- // nop
-}
-
-static void spi_setparity(UNUSED_ARG(struct SerialHardware *, _hw), UNUSED_ARG(int, parity))
-{
- // nop
-}
-
-static bool tx_sending(struct SerialHardware* _hw)
-{
- struct AvrSerial *hw = (struct AvrSerial *)_hw;
- return hw->sending;
-}
-
-
-
-// FIXME: move into compiler.h? Ditch?
-#if COMPILER_C99
- #define C99INIT(name,val) .name = val
-#elif defined(__GNUC__)
- #define C99INIT(name,val) name: val
-#else
- #warning No designated initializers, double check your code
- #define C99INIT(name,val) (val)
-#endif
-
-/*
- * High-level interface data structures
- */
-static const struct SerialHardwareVT UART0_VT =
-{
- C99INIT(init, uart0_init),
- C99INIT(cleanup, uart0_cleanup),
- C99INIT(setBaudrate, uart0_setbaudrate),
- C99INIT(setParity, uart0_setparity),
- C99INIT(txStart, uart0_enabletxirq),
- C99INIT(txSending, tx_sending),
-};
-
-#if AVR_HAS_UART1
-static const struct SerialHardwareVT UART1_VT =
-{
- C99INIT(init, uart1_init),
- C99INIT(cleanup, uart1_cleanup),
- C99INIT(setBaudrate, uart1_setbaudrate),
- C99INIT(setParity, uart1_setparity),
- C99INIT(txStart, uart1_enabletxirq),
- C99INIT(txSending, tx_sending),
-};
-#endif // AVR_HAS_UART1
-
-#if AVR_HAS_UART2
-static const struct SerialHardwareVT UART2_VT =
-{
- C99INIT(init, uart2_init),
- C99INIT(cleanup, uart2_cleanup),
- C99INIT(setBaudrate, uart2_setbaudrate),
- C99INIT(setParity, uart2_setparity),
- C99INIT(txStart, uart2_enabletxirq),
- C99INIT(txSending, tx_sending),
-};
-#endif // AVR_HAS_UART2
-
-#if AVR_HAS_UART3
-static const struct SerialHardwareVT UART3_VT =
-{
- C99INIT(init, uart3_init),
- C99INIT(cleanup, uart3_cleanup),
- C99INIT(setBaudrate, uart3_setbaudrate),
- C99INIT(setParity, uart3_setparity),
- C99INIT(txStart, uart3_enabletxirq),
- C99INIT(txSending, tx_sending),
-};
-#endif // AVR_HAS_UART3
-
-static const struct SerialHardwareVT SPI_VT =
-{
- C99INIT(init, spi_init),
- C99INIT(cleanup, spi_cleanup),
- C99INIT(setBaudrate, spi_setbaudrate),
- C99INIT(setParity, spi_setparity),
- C99INIT(txStart, spi_starttx),
- C99INIT(txSending, tx_sending),
-};
-
-static struct AvrSerial UARTDescs[SER_CNT] =
-{
- {
- C99INIT(hw, /**/) {
- C99INIT(table, &UART0_VT),
- C99INIT(txbuffer, uart0_txbuffer),
- C99INIT(rxbuffer, uart0_rxbuffer),
- C99INIT(txbuffer_size, sizeof(uart0_txbuffer)),
- C99INIT(rxbuffer_size, sizeof(uart0_rxbuffer)),
- },
- C99INIT(sending, false),
- },
-#if AVR_HAS_UART1
- {
- C99INIT(hw, /**/) {
- C99INIT(table, &UART1_VT),
- C99INIT(txbuffer, uart1_txbuffer),
- C99INIT(rxbuffer, uart1_rxbuffer),
- C99INIT(txbuffer_size, sizeof(uart1_txbuffer)),
- C99INIT(rxbuffer_size, sizeof(uart1_rxbuffer)),
- },
- C99INIT(sending, false),
- },
-#endif
-#if AVR_HAS_UART2
- {
- C99INIT(hw, /**/) {
- C99INIT(table, &UART2_VT),
- C99INIT(txbuffer, uart2_txbuffer),
- C99INIT(rxbuffer, uart2_rxbuffer),
- C99INIT(txbuffer_size, sizeof(uart2_txbuffer)),
- C99INIT(rxbuffer_size, sizeof(uart2_rxbuffer)),
- },
- C99INIT(sending, false),
- },
-#endif
-#if AVR_HAS_UART3
- {
- C99INIT(hw, /**/) {
- C99INIT(table, &UART3_VT),
- C99INIT(txbuffer, uart3_txbuffer),
- C99INIT(rxbuffer, uart3_rxbuffer),
- C99INIT(txbuffer_size, sizeof(uart3_txbuffer)),
- C99INIT(rxbuffer_size, sizeof(uart3_rxbuffer)),
- },
- C99INIT(sending, false),
- },
-#endif
- {
- C99INIT(hw, /**/) {
- C99INIT(table, &SPI_VT),
- C99INIT(txbuffer, spi_txbuffer),
- C99INIT(rxbuffer, spi_rxbuffer),
- C99INIT(txbuffer_size, sizeof(spi_txbuffer)),
- C99INIT(rxbuffer_size, sizeof(spi_rxbuffer)),
- },
- C99INIT(sending, false),
- }
-};
-
-struct SerialHardware *ser_hw_getdesc(int unit)
-{
- ASSERT(unit < SER_CNT);
- return &UARTDescs[unit].hw;
-}
-
-
-/*
- * Interrupt handlers
- */
-
-#if CONFIG_SER_HWHANDSHAKE
-
-/// This interrupt is triggered when the CTS line goes high
-DECLARE_ISR(SIG_CTS)
-{
- // Re-enable UDR empty interrupt and TX, then disable CTS interrupt
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_UDRIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0);
- EIMSK &= ~EIMSKF_CTS;
-}
-
-#endif // CONFIG_SER_HWHANDSHAKE
-
-
-/**
- * Serial 0 TX interrupt handler
- */
-DECLARE_ISR(USART0_UDRE_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_handles[SER_UART0]->txfifo;
-
- if (fifo_isempty(txfifo))
- {
- SER_UART0_BUS_TXEND;
-#ifndef SER_UART0_BUS_TXOFF
- UARTDescs[SER_UART0].sending = false;
-#endif
- }
-#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103
- else if (!IS_CTS_ON)
- {
- // Disable rx interrupt and tx, enable CTS interrupt
- // UNTESTED
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0);
- EIFR |= EIMSKF_CTS;
- EIMSK |= EIMSKF_CTS;
- }
-#endif
- else
- {
- char c = fifo_pop(txfifo);
- SER_UART0_BUS_TXCHAR(c);
- }
-
- SER_STROBE_OFF;
-}
-
-#ifdef SER_UART0_BUS_TXOFF
-/**
- * Serial port 0 TX complete interrupt handler.
- *
- * This IRQ is usually disabled. The UDR-empty interrupt
- * enables it when there's no more data to transmit.
- * We need to wait until the last character has been
- * transmitted before switching the 485 transceiver to
- * receive mode.
- *
- * The txfifo might have been refilled by putchar() while
- * we were waiting for the transmission complete interrupt.
- * In this case, we must restart the UDR empty interrupt,
- * otherwise we'd stop the serial port with some data
- * still pending in the buffer.
- */
-DECLARE_ISR(USART0_TX_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_handles[SER_UART0]->txfifo;
- if (fifo_isempty(txfifo))
- {
- SER_UART0_BUS_TXOFF;
- UARTDescs[SER_UART0].sending = false;
- }
- else
- UCSR0B = BV(BIT_RXCIE0) | BV(BIT_UDRIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0);
-
- SER_STROBE_OFF;
-}
-#endif /* SER_UART0_BUS_TXOFF */
-
-
-#if AVR_HAS_UART1
-
-/**
- * Serial 1 TX interrupt handler
- */
-DECLARE_ISR(USART1_UDRE_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_handles[SER_UART1]->txfifo;
-
- if (fifo_isempty(txfifo))
- {
- SER_UART1_BUS_TXEND;
-#ifndef SER_UART1_BUS_TXOFF
- UARTDescs[SER_UART1].sending = false;
-#endif
- }
-#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103
- else if (!IS_CTS_ON)
- {
- // Disable rx interrupt and tx, enable CTS interrupt
- // UNTESTED
- UCSR1B = BV(BIT_RXCIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1);
- EIFR |= EIMSKF_CTS;
- EIMSK |= EIMSKF_CTS;
- }
-#endif
- else
- {
- char c = fifo_pop(txfifo);
- SER_UART1_BUS_TXCHAR(c);
- }
-
- SER_STROBE_OFF;
-}
-
-#ifdef SER_UART1_BUS_TXOFF
-/**
- * Serial port 1 TX complete interrupt handler.
- *
- * \sa port 0 TX complete handler.
- */
-DECLARE_ISR(USART1_TX_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_handles[SER_UART1]->txfifo;
- if (fifo_isempty(txfifo))
- {
- SER_UART1_BUS_TXOFF;
- UARTDescs[SER_UART1].sending = false;
- }
- else
- UCSR1B = BV(BIT_RXCIE1) | BV(BIT_UDRIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1);
-
- SER_STROBE_OFF;
-}
-#endif /* SER_UART1_BUS_TXOFF */
-
-#endif // AVR_HAS_UART1
-
-#if AVR_HAS_UART2
-
-/**
- * Serial 2 TX interrupt handler
- */
-DECLARE_ISR(USART2_UDRE_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_handles[SER_UART2]->txfifo;
-
- if (fifo_isempty(txfifo))
- {
- SER_UART2_BUS_TXEND;
-#ifndef SER_UART2_BUS_TXOFF
- UARTDescs[SER_UART2].sending = false;
-#endif
- }
- else
- {
- char c = fifo_pop(txfifo);
- SER_UART2_BUS_TXCHAR(c);
- }
-
- SER_STROBE_OFF;
-}
-
-#ifdef SER_UART2_BUS_TXOFF
-/**
- * Serial port 2 TX complete interrupt handler.
- *
- * \sa port 0 TX complete handler.
- */
-DECLARE_ISR(USART2_TX_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_handles[SER_UART2]->txfifo;
- if (fifo_isempty(txfifo))
- {
- SER_UART2_BUS_TXOFF;
- UARTDescs[SER_UART2].sending = false;
- }
- else
- UCSR2B = BV(BIT_RXCIE2) | BV(BIT_UDRIE2) | BV(BIT_RXEN2) | BV(BIT_TXEN2);
-
- SER_STROBE_OFF;
-}
-#endif /* SER_UART2_BUS_TXOFF */
-
-#endif // AVR_HAS_UART2
-
-#if AVR_HAS_UART3
-
-/**
- * Serial 3 TX interrupt handler
- */
-DECLARE_ISR(USART3_UDRE_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_handles[SER_UART3]->txfifo;
-
- if (fifo_isempty(txfifo))
- {
- SER_UART3_BUS_TXEND;
-#ifndef SER_UART3_BUS_TXOFF
- UARTDescs[SER_UART3].sending = false;
-#endif
- }
- else
- {
- char c = fifo_pop(txfifo);
- SER_UART3_BUS_TXCHAR(c);
- }
-
- SER_STROBE_OFF;
-}
-
-#ifdef SER_UART3_BUS_TXOFF
-/**
- * Serial port 3 TX complete interrupt handler.
- *
- * \sa port 0 TX complete handler.
- */
-DECLARE_ISR(USART3_TX_vect)
-{
- SER_STROBE_ON;
-
- struct FIFOBuffer * const txfifo = &ser_handles[SER_UART3]->txfifo;
- if (fifo_isempty(txfifo))
- {
- SER_UART3_BUS_TXOFF;
- UARTDescs[SER_UART3].sending = false;
- }
- else
- UCSR3B = BV(BIT_RXCIE3) | BV(BIT_UDRIE3) | BV(BIT_RXEN3) | BV(BIT_TXEN3);
-
- SER_STROBE_OFF;
-}
-#endif /* SER_UART3_BUS_TXOFF */
-
-#endif // AVR_HAS_UART3
-
-
-/**
- * Serial 0 RX complete interrupt handler.
- *
- * This handler is interruptible.
- * Interrupt are reenabled as soon as recv complete interrupt is
- * disabled. Using INTERRUPT() is troublesome when the serial
- * is heavily loaded, because an interrupt could be retriggered
- * when executing the handler prologue before RXCIE is disabled.
- *
- * \note The code that re-enables interrupts is commented out
- * because in some nasty cases the interrupt is retriggered.
- * This is probably due to the RXC flag being set before
- * RXCIE is cleared. Unfortunately the RXC flag is read-only
- * and can't be cleared by code.
- */
-DECLARE_ISR(USART0_RX_vect)
-{
- SER_STROBE_ON;
-
- /* Disable Recv complete IRQ */
- //UCSR0B &= ~BV(RXCIE);
- //IRQ_ENABLE;
-
- /* Should be read before UDR */
- ser_handles[SER_UART0]->status |= UCSR0A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
-
- /* To clear the RXC flag we must _always_ read the UDR even when we're
- * not going to accept the incoming data, otherwise a new interrupt
- * will occur once the handler terminates.
- */
- char c = UDR0;
- struct FIFOBuffer * const rxfifo = &ser_handles[SER_UART0]->rxfifo;
-
- if (fifo_isfull(rxfifo))
- ser_handles[SER_UART0]->status |= SERRF_RXFIFOOVERRUN;
- else
- {
- fifo_push(rxfifo, c);
-#if CONFIG_SER_HWHANDSHAKE
- if (fifo_isfull(rxfifo))
- RTS_OFF;
-#endif
- }
-
- /* Reenable receive complete int */
- //IRQ_DISABLE;
- //UCSR0B |= BV(RXCIE);
-
- SER_STROBE_OFF;
-}
-
-
-#if AVR_HAS_UART1
-
-/**
- * Serial 1 RX complete interrupt handler.
- *
- * This handler is interruptible.
- * Interrupt are reenabled as soon as recv complete interrupt is
- * disabled. Using INTERRUPT() is troublesome when the serial
- * is heavily loaded, because an interrupt could be retriggered
- * when executing the handler prologue before RXCIE is disabled.
- *
- * \see DECLARE_ISR(USART1_RX_vect)
- */
-DECLARE_ISR(USART1_RX_vect)
-{
- SER_STROBE_ON;
-
- /* Disable Recv complete IRQ */
- //UCSR1B &= ~BV(RXCIE);
- //IRQ_ENABLE;
-
- /* Should be read before UDR */
- ser_handles[SER_UART1]->status |= UCSR1A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
-
- /* To avoid an IRQ storm, we must _always_ read the UDR even when we're
- * not going to accept the incoming data
- */
- char c = UDR1;
- struct FIFOBuffer * const rxfifo = &ser_handles[SER_UART1]->rxfifo;
- //ASSERT_VALID_FIFO(rxfifo);
-
- if (UNLIKELY(fifo_isfull(rxfifo)))
- ser_handles[SER_UART1]->status |= SERRF_RXFIFOOVERRUN;
- else
- {
- fifo_push(rxfifo, c);
-#if CONFIG_SER_HWHANDSHAKE
- if (fifo_isfull(rxfifo))
- RTS_OFF;
-#endif
- }
- /* Re-enable receive complete int */
- //IRQ_DISABLE;
- //UCSR1B |= BV(RXCIE);
-
- SER_STROBE_OFF;
-}
-
-#endif // AVR_HAS_UART1
-
-#if AVR_HAS_UART2
-
-/**
- * Serial 2 RX complete interrupt handler.
- *
- * This handler is interruptible.
- * Interrupt are reenabled as soon as recv complete interrupt is
- * disabled. Using INTERRUPT() is troublesome when the serial
- * is heavily loaded, because an interrupt could be retriggered
- * when executing the handler prologue before RXCIE is disabled.
- *
- * \see DECLARE_ISR(USART2_RX_vect)
- */
-DECLARE_ISR(USART2_RX_vect)
-{
- SER_STROBE_ON;
-
- /* Disable Recv complete IRQ */
- //UCSR1B &= ~BV(RXCIE);
- //IRQ_ENABLE;
-
- /* Should be read before UDR */
- ser_handles[SER_UART2]->status |= UCSR2A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
-
- /* To avoid an IRQ storm, we must _always_ read the UDR even when we're
- * not going to accept the incoming data
- */
- char c = UDR2;
- struct FIFOBuffer * const rxfifo = &ser_handles[SER_UART2]->rxfifo;
- //ASSERT_VALID_FIFO(rxfifo);
-
- if (UNLIKELY(fifo_isfull(rxfifo)))
- ser_handles[SER_UART2]->status |= SERRF_RXFIFOOVERRUN;
- else
- {
- fifo_push(rxfifo, c);
-#if CONFIG_SER_HWHANDSHAKE
- if (fifo_isfull(rxfifo))
- RTS_OFF;
-#endif
- }
- /* Re-enable receive complete int */
- //IRQ_DISABLE;
- //UCSR1B |= BV(RXCIE);
-
- SER_STROBE_OFF;
-}
-
-#endif // AVR_HAS_UART2
-
-#if AVR_HAS_UART3
-
-/**
- * Serial 3 RX complete interrupt handler.
- *
- * This handler is interruptible.
- * Interrupt are reenabled as soon as recv complete interrupt is
- * disabled. Using INTERRUPT() is troublesome when the serial
- * is heavily loaded, because an interrupt could be retriggered
- * when executing the handler prologue before RXCIE is disabled.
- *
- * \see DECLARE_ISR(USART3_RX_vect)
- */
-DECLARE_ISR(USART3_RX_vect)
-{
- SER_STROBE_ON;
-
- /* Disable Recv complete IRQ */
- //UCSR1B &= ~BV(RXCIE);
- //IRQ_ENABLE;
-
- /* Should be read before UDR */
- ser_handles[SER_UART3]->status |= UCSR3A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
-
- /* To avoid an IRQ storm, we must _always_ read the UDR even when we're
- * not going to accept the incoming data
- */
- char c = UDR3;
- struct FIFOBuffer * const rxfifo = &ser_handles[SER_UART3]->rxfifo;
- //ASSERT_VALID_FIFO(rxfifo);
-
- if (UNLIKELY(fifo_isfull(rxfifo)))
- ser_handles[SER_UART3]->status |= SERRF_RXFIFOOVERRUN;
- else
- {
- fifo_push(rxfifo, c);
-#if CONFIG_SER_HWHANDSHAKE
- if (fifo_isfull(rxfifo))
- RTS_OFF;
-#endif
- }
- /* Re-enable receive complete int */
- //IRQ_DISABLE;
- //UCSR1B |= BV(RXCIE);
-
- SER_STROBE_OFF;
-}
-
-#endif // AVR_HAS_UART3
-
-
-/**
- * SPI interrupt handler
- */
-DECLARE_ISR(SPI_STC_vect)
-{
- SER_STROBE_ON;
-
- /* Read incoming byte. */
- if (!fifo_isfull(&ser_handles[SER_SPI]->rxfifo))
- fifo_push(&ser_handles[SER_SPI]->rxfifo, SPDR);
- /*
- * FIXME
- else
- ser_handles[SER_SPI]->status |= SERRF_RXFIFOOVERRUN;
- */
-
- /* Send */
- if (!fifo_isempty(&ser_handles[SER_SPI]->txfifo))
- SPDR = fifo_pop(&ser_handles[SER_SPI]->txfifo);
- else
- UARTDescs[SER_SPI].sending = false;
-
- SER_STROBE_OFF;
-}
+++ /dev/null
-/**
- * \file
- * <!--
- * This file is part of BeRTOS.
- *
- * Bertos is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * As a special exception, you may use this file as part of a free software
- * library without restriction. Specifically, if other files instantiate
- * templates or use macros or inline functions from this file, or you compile
- * this file and link it with other files to produce an executable, this
- * file does not by itself cause the resulting executable to be covered by
- * the GNU General Public License. This exception does not however
- * invalidate any other reasons why the executable file might be covered by
- * the GNU General Public License.
- *
- * Copyright 2007, 2010 Develer S.r.l. (http://www.develer.com/)
- *
- * -->
- *
- *
- * \author Daniele Basile <asterix@develer.com>
- * \author Luca Ottaviano <lottaviano@develer.com>
- *
- * \brief Low-level serial module for AVR (interface).
- *
- */
-
-#ifndef DRV_SER_AVR_H
-#define DRV_SER_AVR_H
-
-#include <cfg/macros.h> /* BV() */
-#include <cfg/compiler.h> /* uint32_t */
-
-typedef uint8_t serstatus_t;
-
-/* Software errors */
-#define SERRF_RXFIFOOVERRUN BV(0) /**< Rx FIFO buffer overrun */
-#define SERRF_RXTIMEOUT BV(5) /**< Receive timeout */
-#define SERRF_TXTIMEOUT BV(6) /**< Transmit timeout */
-
-/*
-* Hardware errors.
-* These flags map directly to the AVR UART Status Register (USR).
-*/
-#define SERRF_RXSROVERRUN BV(3) /**< Rx shift register overrun */
-#define SERRF_FRAMEERROR BV(4) /**< Stop bit missing */
-#define SERRF_PARITYERROR BV(7) /**< Parity error */
-#define SERRF_NOISEERROR 0 /**< Unsupported */
-
-
-/**
- * SPI clock polarity.
- *
- * $WIZ$ ser_spi_pol = "SPI_NORMAL_LOW", "SPI_NORMAL_HIGH"
- * }
- */
-#define SPI_NORMAL_LOW 0
-#define SPI_NORMAL_HIGH 1
-
-/**
- * SPI clock phase.
- *
- * $WIZ$ ser_spi_phase = "SPI_SAMPLE_ON_FIRST_EDGE", "SPI_SAMPLE_ON_SECOND_EDGE"
- * }
- */
-#define SPI_SAMPLE_ON_FIRST_EDGE 0
-#define SPI_SAMPLE_ON_SECOND_EDGE 1
-
-/**
- * \name Serial hw numbers
- *
- * \{
- */
-enum
-{
-#if CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
- SER_UART0,
- SER_UART1,
- SER_UART2,
- SER_UART3,
- SER_SPI,
-#elif CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA1281
- SER_UART0,
- SER_UART1,
- SER_SPI,
-#elif CPU_AVR_ATMEGA103 || CPU_AVR_ATMEGA8 || CPU_AVR_ATMEGA32 || CPU_AVR_ATMEGA168 \
- || CPU_AVR_ATMEGA328P
- SER_UART0,
- SER_SPI,
-#else
- #error unknown architecture
-#endif
- SER_CNT /**< Number of serial ports */
-};
-/*\}*/
-
-#endif /* DRV_SER_AVR_H */
--- /dev/null
+/**
+ * \file
+ * <!--
+ * This file is part of BeRTOS.
+ *
+ * Bertos is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * As a special exception, you may use this file as part of a free software
+ * library without restriction. Specifically, if other files instantiate
+ * templates or use macros or inline functions from this file, or you compile
+ * this file and link it with other files to produce an executable, this
+ * file does not by itself cause the resulting executable to be covered by
+ * the GNU General Public License. This exception does not however
+ * invalidate any other reasons why the executable file might be covered by
+ * the GNU General Public License.
+ *
+ * Copyright 2003, 2004, 2010 Develer S.r.l. (http://www.develer.com/)
+ * Copyright 2000 Bernie Innocenti <bernie@codewiz.org>
+ *
+ * -->
+ *
+ * \brief AVR UART and SPI I/O driver (Implementation)
+ *
+ * \author Bernie Innocenti <bernie@codewiz.org>
+ * \author Stefano Fedrigo <aleph@develer.com>
+ * \author Luca Ottaviano <lottaviano@develer.com>
+ */
+
+#include "hw/hw_ser.h" /* Required for bus macros overrides */
+#include <hw/hw_cpufreq.h> /* CPU_FREQ */
+
+#include "cfg/cfg_ser.h"
+
+#include <cfg/macros.h> /* DIV_ROUND */
+#include <cfg/debug.h>
+#include <cfg/cfg_arch.h> // ARCH_NIGHTTEST
+
+#include <drv/ser.h>
+#include <drv/ser_p.h>
+#include <drv/timer.h>
+
+#include <struct/fifobuf.h>
+
+#include <avr/io.h>
+
+#if defined(__AVR_LIBC_VERSION__) && (__AVR_LIBC_VERSION__ >= 10400UL)
+ #include <avr/interrupt.h>
+#else
+ #include <avr/signal.h>
+#endif
+
+
+#if !CONFIG_SER_HWHANDSHAKE
+ /**
+ * \name Hardware handshake (RTS/CTS).
+ * \{
+ */
+ #define RTS_ON do {} while (0)
+ #define RTS_OFF do {} while (0)
+ #define IS_CTS_ON true
+ #define EIMSKF_CTS 0 /**< Dummy value, must be overridden */
+ /*\}*/
+#endif
+
+#if CPU_AVR_ATMEGA1281 || CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
+ #define BIT_RXCIE0 RXCIE0
+ #define BIT_RXEN0 RXEN0
+ #define BIT_TXEN0 TXEN0
+ #define BIT_UDRIE0 UDRIE0
+
+ #define BIT_RXCIE1 RXCIE1
+ #define BIT_RXEN1 RXEN1
+ #define BIT_TXEN1 TXEN1
+ #define BIT_UDRIE1 UDRIE1
+ #if CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
+ #define BIT_RXCIE2 RXCIE2
+ #define BIT_RXEN2 RXEN2
+ #define BIT_TXEN2 TXEN2
+ #define BIT_UDRIE2 UDRIE2
+
+ #define BIT_RXCIE3 RXCIE3
+ #define BIT_RXEN3 RXEN3
+ #define BIT_TXEN3 TXEN3
+ #define BIT_UDRIE3 UDRIE3
+ #endif
+#elif CPU_AVR_ATMEGA168 || CPU_AVR_ATMEGA328P
+ #define BIT_RXCIE0 RXCIE0
+ #define BIT_RXEN0 RXEN0
+ #define BIT_TXEN0 TXEN0
+ #define BIT_UDRIE0 UDRIE0
+
+ #define BIT_RXCIE1 RXCIE0
+ #define BIT_RXEN1 RXEN0
+ #define BIT_TXEN1 TXEN0
+ #define BIT_UDRIE1 UDRIE0
+#else
+ #define BIT_RXCIE0 RXCIE
+ #define BIT_RXEN0 RXEN
+ #define BIT_TXEN0 TXEN
+ #define BIT_UDRIE0 UDRIE
+
+ #define BIT_RXCIE1 RXCIE
+ #define BIT_RXEN1 RXEN
+ #define BIT_TXEN1 TXEN
+ #define BIT_UDRIE1 UDRIE
+#endif
+
+
+/**
+ * \name Overridable serial bus hooks
+ *
+ * These can be redefined in hw.h to implement
+ * special bus policies such as half-duplex, 485, etc.
+ *
+ *
+ * \code
+ * TXBEGIN TXCHAR TXEND TXOFF
+ * | __________|__________ | |
+ * | | | | | | | | |
+ * v v v v v v v v v
+ * ______ __ __ __ __ __ __ ________________
+ * \/ \/ \/ \/ \/ \/ \/
+ * ______/\__/\__/\__/\__/\__/\__/
+ *
+ * \endcode
+ *
+ * \{
+ */
+#ifndef SER_UART0_BUS_TXINIT
+ /**
+ * Default TXINIT macro - invoked in uart0_init()
+ *
+ * - Enable both the receiver and the transmitter
+ * - Enable only the RX complete interrupt
+ */
+ #define SER_UART0_BUS_TXINIT do { \
+ UCSR0A = 0; /* The Arduino Uno bootloader turns on U2X0 */ \
+ UCSR0B = BV(BIT_RXCIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
+ } while (0)
+#endif
+
+#ifndef SER_UART0_BUS_TXBEGIN
+ /**
+ * Invoked before starting a transmission
+ *
+ * - Enable both the receiver and the transmitter
+ * - Enable both the RX complete and UDR empty interrupts
+ */
+ #define SER_UART0_BUS_TXBEGIN do { \
+ UCSR0B = BV(BIT_RXCIE0) | BV(BIT_UDRIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
+ } while (0)
+#endif
+
+#ifndef SER_UART0_BUS_TXCHAR
+ /**
+ * Invoked to send one character.
+ */
+ #define SER_UART0_BUS_TXCHAR(c) do { \
+ UDR0 = (c); \
+ } while (0)
+#endif
+
+#ifndef SER_UART0_BUS_TXEND
+ /**
+ * Invoked as soon as the txfifo becomes empty
+ *
+ * - Keep both the receiver and the transmitter enabled
+ * - Keep the RX complete interrupt enabled
+ * - Disable the UDR empty interrupt
+ */
+ #define SER_UART0_BUS_TXEND do { \
+ UCSR0B = BV(BIT_RXCIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0); \
+ } while (0)
+#endif
+
+#ifndef SER_UART0_BUS_TXOFF
+ /**
+ * \def SER_UART0_BUS_TXOFF
+ *
+ * Invoked after the last character has been transmitted
+ *
+ * The default is no action.
+ */
+ #ifdef __doxygen__
+ #define SER_UART0_BUS_TXOFF
+ #endif
+#endif
+
+#ifndef SER_UART1_BUS_TXINIT
+ /** \sa SER_UART0_BUS_TXINIT */
+ #define SER_UART1_BUS_TXINIT do { \
+ UCSR1B = BV(BIT_RXCIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
+ } while (0)
+#endif
+#ifndef SER_UART1_BUS_TXBEGIN
+ /** \sa SER_UART0_BUS_TXBEGIN */
+ #define SER_UART1_BUS_TXBEGIN do { \
+ UCSR1B = BV(BIT_RXCIE1) | BV(BIT_UDRIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
+ } while (0)
+#endif
+#ifndef SER_UART1_BUS_TXCHAR
+ /** \sa SER_UART0_BUS_TXCHAR */
+ #define SER_UART1_BUS_TXCHAR(c) do { \
+ UDR1 = (c); \
+ } while (0)
+#endif
+#ifndef SER_UART1_BUS_TXEND
+ /** \sa SER_UART0_BUS_TXEND */
+ #define SER_UART1_BUS_TXEND do { \
+ UCSR1B = BV(BIT_RXCIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1); \
+ } while (0)
+#endif
+#ifndef SER_UART1_BUS_TXOFF
+ /**
+ * \def SER_UART1_BUS_TXOFF
+ *
+ * \see SER_UART0_BUS_TXOFF
+ */
+ #ifdef __doxygen__
+ #define SER_UART1_BUS_TXOFF
+ #endif
+#endif
+
+#ifndef SER_UART2_BUS_TXINIT
+ /** \sa SER_UART0_BUS_TXINIT */
+ #define SER_UART2_BUS_TXINIT do { \
+ UCSR2B = BV(BIT_RXCIE2) | BV(BIT_RXEN2) | BV(BIT_TXEN2); \
+ } while (0)
+#endif
+#ifndef SER_UART2_BUS_TXBEGIN
+ /** \sa SER_UART0_BUS_TXBEGIN */
+ #define SER_UART2_BUS_TXBEGIN do { \
+ UCSR2B = BV(BIT_RXCIE2) | BV(BIT_UDRIE2) | BV(BIT_RXEN2) | BV(BIT_TXEN2); \
+ } while (0)
+#endif
+#ifndef SER_UART2_BUS_TXCHAR
+ /** \sa SER_UART0_BUS_TXCHAR */
+ #define SER_UART2_BUS_TXCHAR(c) do { \
+ UDR2 = (c); \
+ } while (0)
+#endif
+#ifndef SER_UART2_BUS_TXEND
+ /** \sa SER_UART0_BUS_TXEND */
+ #define SER_UART2_BUS_TXEND do { \
+ UCSR2B = BV(BIT_RXCIE2) | BV(BIT_RXEN2) | BV(BIT_TXEN2); \
+ } while (0)
+#endif
+#ifndef SER_UART2_BUS_TXOFF
+ /**
+ * \def SER_UART2_BUS_TXOFF
+ *
+ * \see SER_UART0_BUS_TXOFF
+ */
+ #ifdef __doxygen__
+ #define SER_UART2_BUS_TXOFF
+ #endif
+#endif
+
+#ifndef SER_UART3_BUS_TXINIT
+ /** \sa SER_UART0_BUS_TXINIT */
+ #define SER_UART3_BUS_TXINIT do { \
+ UCSR3B = BV(BIT_RXCIE3) | BV(BIT_RXEN3) | BV(BIT_TXEN3); \
+ } while (0)
+#endif
+#ifndef SER_UART3_BUS_TXBEGIN
+ /** \sa SER_UART0_BUS_TXBEGIN */
+ #define SER_UART3_BUS_TXBEGIN do { \
+ UCSR3B = BV(BIT_RXCIE3) | BV(BIT_UDRIE3) | BV(BIT_RXEN3) | BV(BIT_TXEN3); \
+ } while (0)
+#endif
+#ifndef SER_UART3_BUS_TXCHAR
+ /** \sa SER_UART0_BUS_TXCHAR */
+ #define SER_UART3_BUS_TXCHAR(c) do { \
+ UDR3 = (c); \
+ } while (0)
+#endif
+#ifndef SER_UART3_BUS_TXEND
+ /** \sa SER_UART0_BUS_TXEND */
+ #define SER_UART3_BUS_TXEND do { \
+ UCSR3B = BV(BIT_RXCIE3) | BV(BIT_RXEN3) | BV(BIT_TXEN3); \
+ } while (0)
+#endif
+#ifndef SER_UART3_BUS_TXOFF
+ /**
+ * \def SER_UART3_BUS_TXOFF
+ *
+ * \see SER_UART0_BUS_TXOFF
+ */
+ #ifdef __doxygen__
+ #define SER_UART3_BUS_TXOFF
+ #endif
+#endif
+/*\}*/
+
+
+/**
+ * \name Overridable SPI hooks
+ *
+ * These can be redefined in hw.h to implement
+ * special bus policies such as slave select pin handling, etc.
+ *
+ * \{
+ */
+#ifndef SER_SPI_BUS_TXINIT
+ /**
+ * Default TXINIT macro - invoked in spi_init()
+ * The default is no action.
+ */
+ #define SER_SPI_BUS_TXINIT
+#endif
+
+#ifndef SER_SPI_BUS_TXCLOSE
+ /**
+ * Invoked after the last character has been transmitted.
+ * The default is no action.
+ */
+ #define SER_SPI_BUS_TXCLOSE
+#endif
+/*\}*/
+
+
+/* SPI port and pin configuration */
+#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103 || CPU_AVR_ATMEGA1281 \
+ || CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
+ #define SPI_PORT PORTB
+ #define SPI_DDR DDRB
+ #define SPI_SS_BIT PB0
+ #define SPI_SCK_BIT PB1
+ #define SPI_MOSI_BIT PB2
+ #define SPI_MISO_BIT PB3
+// TODO: these bits are the same as ATMEGA8 but the defines in avr-gcc are different.
+// They should be the same!
+#elif CPU_AVR_ATMEGA328P
+ #define SPI_PORT PORTB
+ #define SPI_DDR DDRB
+ #define SPI_SS_BIT PORTB2
+ #define SPI_SCK_BIT PORTB5
+ #define SPI_MOSI_BIT PORTB3
+ #define SPI_MISO_BIT PORTB4
+#elif CPU_AVR_ATMEGA8 || CPU_AVR_ATMEGA168
+ #define SPI_PORT PORTB
+ #define SPI_DDR DDRB
+ #define SPI_SS_BIT PB2
+ #define SPI_SCK_BIT PB5
+ #define SPI_MOSI_BIT PB3
+ #define SPI_MISO_BIT PB4
+#elif CPU_AVR_ATMEGA32
+ #define SPI_PORT PORTB
+ #define SPI_DDR DDRB
+ #define SPI_SS_BIT PB4
+ #define SPI_SCK_BIT PB7
+ #define SPI_MOSI_BIT PB5
+ #define SPI_MISO_BIT PB6
+#else
+ #error Unknown architecture
+#endif
+
+/* USART register definitions */
+#if CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
+ #define AVR_HAS_UART1 1
+ #define AVR_HAS_UART2 1
+ #define AVR_HAS_UART3 1
+#elif CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA1281
+ #define AVR_HAS_UART1 1
+ #define AVR_HAS_UART2 0
+ #define AVR_HAS_UART3 0
+#elif CPU_AVR_ATMEGA168 || CPU_AVR_ATMEGA328P
+ #define AVR_HAS_UART1 0
+ #define AVR_HAS_UART2 0
+ #define AVR_HAS_UART3 0
+ #define USART0_UDRE_vect USART_UDRE_vect
+ #define USART0_RX_vect USART_RX_vect
+ #define USART0_TX_vect USART_TX_vect
+#elif CPU_AVR_ATMEGA8 || CPU_AVR_ATMEGA32
+ #define AVR_HAS_UART1 0
+ #define AVR_HAS_UART2 0
+ #define AVR_HAS_UART3 0
+ #define UCSR0A UCSRA
+ #define UCSR0B UCSRB
+ #define UCSR0C UCSRC
+ #define UDR0 UDR
+ #define UBRR0L UBRRL
+ #define UBRR0H UBRRH
+ #define UPM01 UPM1
+ #define UPM00 UPM0
+ #define USART0_UDRE_vect USART_UDRE_vect
+ #define USART0_RX_vect USART_RXC_vect
+ #define USART0_TX_vect USART_TXC_vect
+#elif CPU_AVR_ATMEGA103
+ #define AVR_HAS_UART1 0
+ #define AVR_HAS_UART2 0
+ #define AVR_HAS_UART3 0
+ #define UCSR0B UCR
+ #define UDR0 UDR
+ #define UCSR0A USR
+ #define UBRR0L UBRR
+ #define USART0_UDRE_vect USART_UDRE_vect
+ #define USART0_RX_vect USART_RX_vect
+ #define USART0_TX_vect USART_TX_vect
+#else
+ #error Unknown architecture
+#endif
+
+
+/* From the high-level serial driver */
+extern struct Serial *ser_handles[SER_CNT];
+
+/* TX and RX buffers */
+static unsigned char uart0_txbuffer[CONFIG_UART0_TXBUFSIZE];
+static unsigned char uart0_rxbuffer[CONFIG_UART0_RXBUFSIZE];
+#if AVR_HAS_UART1
+ static unsigned char uart1_txbuffer[CONFIG_UART1_TXBUFSIZE];
+ static unsigned char uart1_rxbuffer[CONFIG_UART1_RXBUFSIZE];
+#endif
+#if AVR_HAS_UART2
+ static unsigned char uart2_txbuffer[CONFIG_UART2_TXBUFSIZE];
+ static unsigned char uart2_rxbuffer[CONFIG_UART2_RXBUFSIZE];
+#endif
+#if AVR_HAS_UART3
+ static unsigned char uart3_txbuffer[CONFIG_UART3_TXBUFSIZE];
+ static unsigned char uart3_rxbuffer[CONFIG_UART3_RXBUFSIZE];
+#endif
+static unsigned char spi_txbuffer[CONFIG_SPI_TXBUFSIZE];
+static unsigned char spi_rxbuffer[CONFIG_SPI_RXBUFSIZE];
+
+
+/**
+ * Internal hardware state structure
+ *
+ * The \a sending variable is true while the transmission
+ * interrupt is retriggering itself.
+ *
+ * For the USARTs the \a sending flag is useful for taking specific
+ * actions before sending a burst of data, at the start of a trasmission
+ * but not before every char sent.
+ *
+ * For the SPI, this flag is necessary because the SPI sends and receives
+ * bytes at the same time and the SPI IRQ is unique for send/receive.
+ * The only way to start transmission is to write data in SPDR (this
+ * is done by spi_starttx()). We do this *only* if a transfer is
+ * not already started.
+ */
+struct AvrSerial
+{
+ struct SerialHardware hw;
+ volatile bool sending;
+};
+
+static uint16_t uart_period(unsigned long bps)
+{
+ uint16_t period = DIV_ROUND(CPU_FREQ / 16UL, bps) - 1;
+
+ #ifdef _DEBUG
+ long skew = bps - (long)(period + 1) * (CPU_FREQ / 16);
+ /* 8N1 is reliable within 3% skew */
+ if ((unsigned long)ABS(skew) > bps / (100 / 3))
+ kprintf("Baudrate off by %ldbps\n", skew);
+ #endif
+
+ //DB(kprintf("uart_period(bps=%lu): period=%u\n", bps, period);)
+ return period;
+}
+
+/*
+ * Callbacks
+ */
+static void uart0_init(
+ UNUSED_ARG(struct SerialHardware *, _hw),
+ UNUSED_ARG(struct Serial *, ser))
+{
+ SER_UART0_BUS_TXINIT;
+ RTS_ON;
+ SER_STROBE_INIT;
+}
+
+static void uart0_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
+{
+ UCSR0B = 0;
+}
+
+static void uart0_enabletxirq(struct SerialHardware *_hw)
+{
+ struct AvrSerial *hw = (struct AvrSerial *)_hw;
+
+ /*
+ * WARNING: racy code here! The tx interrupt sets hw->sending to false
+ * when it runs with an empty fifo. The order of statements in the
+ * if-block matters.
+ */
+ if (!hw->sending)
+ {
+ hw->sending = true;
+ SER_UART0_BUS_TXBEGIN;
+ }
+}
+
+static void uart0_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
+{
+ uint16_t period = uart_period(rate);
+
+#if !CPU_AVR_ATMEGA103
+ UBRR0H = period >> 8;
+#endif
+ UBRR0L = period;
+}
+
+static void uart0_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
+{
+#if !CPU_AVR_ATMEGA103
+ UCSR0C = (UCSR0C & ~(BV(UPM01) | BV(UPM00))) | ((parity) << UPM00);
+#endif
+}
+
+#if AVR_HAS_UART1
+
+static void uart1_init(
+ UNUSED_ARG(struct SerialHardware *, _hw),
+ UNUSED_ARG(struct Serial *, ser))
+{
+ SER_UART1_BUS_TXINIT;
+ RTS_ON;
+ SER_STROBE_INIT;
+}
+
+static void uart1_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
+{
+ UCSR1B = 0;
+}
+
+static void uart1_enabletxirq(struct SerialHardware *_hw)
+{
+ struct AvrSerial *hw = (struct AvrSerial *)_hw;
+
+ /*
+ * WARNING: racy code here! The tx interrupt
+ * sets hw->sending to false when it runs with
+ * an empty fifo. The order of the statements
+ * in the if-block matters.
+ */
+ if (!hw->sending)
+ {
+ hw->sending = true;
+ SER_UART1_BUS_TXBEGIN;
+ }
+}
+
+static void uart1_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
+{
+ uint16_t period = uart_period(rate);
+ UBRR1H = period >> 8;
+ UBRR1L = period;
+}
+
+static void uart1_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
+{
+ UCSR1C = (UCSR1C & ~(BV(UPM11) | BV(UPM10))) | ((parity) << UPM10);
+}
+
+#endif // AVR_HAS_UART1
+
+#if AVR_HAS_UART2
+
+static void uart2_init(
+ UNUSED_ARG(struct SerialHardware *, _hw),
+ UNUSED_ARG(struct Serial *, ser))
+{
+ SER_UART2_BUS_TXINIT;
+ RTS_ON;
+ SER_STROBE_INIT;
+}
+
+static void uart2_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
+{
+ UCSR2B = 0;
+}
+
+static void uart2_enabletxirq(struct SerialHardware *_hw)
+{
+ struct AvrSerial *hw = (struct AvrSerial *)_hw;
+
+ /*
+ * WARNING: racy code here! The tx interrupt
+ * sets hw->sending to false when it runs with
+ * an empty fifo. The order of the statements
+ * in the if-block matters.
+ */
+ if (!hw->sending)
+ {
+ hw->sending = true;
+ SER_UART2_BUS_TXBEGIN;
+ }
+}
+
+static void uart2_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
+{
+ uint16_t period = uart_period(rate);
+ UBRR2H = period >> 8;
+ UBRR2L = period;
+}
+
+static void uart2_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
+{
+ UCSR2C = (UCSR2C & ~(BV(UPM21) | BV(UPM20))) | ((parity) << UPM20);
+}
+
+#endif // AVR_HAS_UART2
+
+#if AVR_HAS_UART3
+
+static void uart3_init(
+ UNUSED_ARG(struct SerialHardware *, _hw),
+ UNUSED_ARG(struct Serial *, ser))
+{
+ SER_UART3_BUS_TXINIT;
+ RTS_ON;
+ SER_STROBE_INIT;
+}
+
+static void uart3_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
+{
+ UCSR3B = 0;
+}
+
+static void uart3_enabletxirq(struct SerialHardware *_hw)
+{
+ struct AvrSerial *hw = (struct AvrSerial *)_hw;
+
+ /*
+ * WARNING: racy code here! The tx interrupt
+ * sets hw->sending to false when it runs with
+ * an empty fifo. The order of the statements
+ * in the if-block matters.
+ */
+ if (!hw->sending)
+ {
+ hw->sending = true;
+ SER_UART3_BUS_TXBEGIN;
+ }
+}
+
+static void uart3_setbaudrate(UNUSED_ARG(struct SerialHardware *, _hw), unsigned long rate)
+{
+ uint16_t period = uart_period(rate);
+ UBRR3H = period >> 8;
+ UBRR3L = period;
+}
+
+static void uart3_setparity(UNUSED_ARG(struct SerialHardware *, _hw), int parity)
+{
+ UCSR3C = (UCSR3C & ~(BV(UPM31) | BV(UPM30))) | ((parity) << UPM30);
+}
+
+#endif // AVR_HAS_UART3
+
+
+static void spi_init(UNUSED_ARG(struct SerialHardware *, _hw), UNUSED_ARG(struct Serial *, ser))
+{
+ /*
+ * Set MOSI and SCK ports out, MISO in.
+ *
+ * The ATmega64/128 datasheet explicitly states that the input/output
+ * state of the SPI pins is not significant, as when the SPI is
+ * active the I/O port are overrided.
+ * This is *blatantly FALSE*.
+ *
+ * Moreover, the MISO pin on the board_kc *must* be in high impedance
+ * state even when the SPI is off, because the line is wired together
+ * with the KBus serial RX, and the transmitter of the slave boards
+ * would be unable to drive the line.
+ */
+ ATOMIC(SPI_DDR |= (BV(SPI_MOSI_BIT) | BV(SPI_SCK_BIT)));
+
+ /*
+ * If the SPI master mode is activated and the SS pin is in input and tied low,
+ * the SPI hardware will automatically switch to slave mode!
+ * For proper communication this pins should therefore be:
+ * - as output
+ * - as input but tied high forever!
+ * This driver set the pin as output.
+ */
+ #warning FIXME:SPI SS pin set as output for proper operation, check schematics for possible conflicts.
+ ATOMIC(SPI_DDR |= BV(SPI_SS_BIT));
+
+ ATOMIC(SPI_DDR &= ~BV(SPI_MISO_BIT));
+ /* Enable SPI, IRQ on, Master */
+ SPCR = BV(SPE) | BV(SPIE) | BV(MSTR);
+
+ /* Set data order */
+ #if CONFIG_SPI_DATA_ORDER == SER_LSB_FIRST
+ SPCR |= BV(DORD);
+ #endif
+
+ /* Set SPI clock rate */
+ #if CONFIG_SPI_CLOCK_DIV == 128
+ SPCR |= (BV(SPR1) | BV(SPR0));
+ #elif (CONFIG_SPI_CLOCK_DIV == 64 || CONFIG_SPI_CLOCK_DIV == 32)
+ SPCR |= BV(SPR1);
+ #elif (CONFIG_SPI_CLOCK_DIV == 16 || CONFIG_SPI_CLOCK_DIV == 8)
+ SPCR |= BV(SPR0);
+ #elif (CONFIG_SPI_CLOCK_DIV == 4 || CONFIG_SPI_CLOCK_DIV == 2)
+ // SPR0 & SDPR1 both at 0
+ #else
+ #error Unsupported SPI clock division factor.
+ #endif
+
+ /* Set SPI2X bit (spi double frequency) */
+ #if (CONFIG_SPI_CLOCK_DIV == 128 || CONFIG_SPI_CLOCK_DIV == 64 \
+ || CONFIG_SPI_CLOCK_DIV == 16 || CONFIG_SPI_CLOCK_DIV == 4)
+ SPSR &= ~BV(SPI2X);
+ #elif (CONFIG_SPI_CLOCK_DIV == 32 || CONFIG_SPI_CLOCK_DIV == 8 || CONFIG_SPI_CLOCK_DIV == 2)
+ SPSR |= BV(SPI2X);
+ #else
+ #error Unsupported SPI clock division factor.
+ #endif
+
+ /* Set clock polarity */
+ #if CONFIG_SPI_CLOCK_POL == 1
+ SPCR |= BV(CPOL);
+ #endif
+
+ /* Set clock phase */
+ #if CONFIG_SPI_CLOCK_PHASE == 1
+ SPCR |= BV(CPHA);
+ #endif
+ SER_SPI_BUS_TXINIT;
+
+ SER_STROBE_INIT;
+}
+
+static void spi_cleanup(UNUSED_ARG(struct SerialHardware *, _hw))
+{
+ SPCR = 0;
+
+ SER_SPI_BUS_TXCLOSE;
+
+ /* Set all pins as inputs */
+ ATOMIC(SPI_DDR &= ~(BV(SPI_MISO_BIT) | BV(SPI_MOSI_BIT) | BV(SPI_SCK_BIT) | BV(SPI_SS_BIT)));
+}
+
+static void spi_starttx(struct SerialHardware *_hw)
+{
+ struct AvrSerial *hw = (struct AvrSerial *)_hw;
+
+ cpu_flags_t flags;
+ IRQ_SAVE_DISABLE(flags);
+
+ /* Send data only if the SPI is not already transmitting */
+ if (!hw->sending && !fifo_isempty(&ser_handles[SER_SPI]->txfifo))
+ {
+ hw->sending = true;
+ SPDR = fifo_pop(&ser_handles[SER_SPI]->txfifo);
+ }
+
+ IRQ_RESTORE(flags);
+}
+
+static void spi_setbaudrate(
+ UNUSED_ARG(struct SerialHardware *, _hw),
+ UNUSED_ARG(unsigned long, rate))
+{
+ // nop
+}
+
+static void spi_setparity(UNUSED_ARG(struct SerialHardware *, _hw), UNUSED_ARG(int, parity))
+{
+ // nop
+}
+
+static bool tx_sending(struct SerialHardware* _hw)
+{
+ struct AvrSerial *hw = (struct AvrSerial *)_hw;
+ return hw->sending;
+}
+
+
+
+// FIXME: move into compiler.h? Ditch?
+#if COMPILER_C99
+ #define C99INIT(name,val) .name = val
+#elif defined(__GNUC__)
+ #define C99INIT(name,val) name: val
+#else
+ #warning No designated initializers, double check your code
+ #define C99INIT(name,val) (val)
+#endif
+
+/*
+ * High-level interface data structures
+ */
+static const struct SerialHardwareVT UART0_VT =
+{
+ C99INIT(init, uart0_init),
+ C99INIT(cleanup, uart0_cleanup),
+ C99INIT(setBaudrate, uart0_setbaudrate),
+ C99INIT(setParity, uart0_setparity),
+ C99INIT(txStart, uart0_enabletxirq),
+ C99INIT(txSending, tx_sending),
+};
+
+#if AVR_HAS_UART1
+static const struct SerialHardwareVT UART1_VT =
+{
+ C99INIT(init, uart1_init),
+ C99INIT(cleanup, uart1_cleanup),
+ C99INIT(setBaudrate, uart1_setbaudrate),
+ C99INIT(setParity, uart1_setparity),
+ C99INIT(txStart, uart1_enabletxirq),
+ C99INIT(txSending, tx_sending),
+};
+#endif // AVR_HAS_UART1
+
+#if AVR_HAS_UART2
+static const struct SerialHardwareVT UART2_VT =
+{
+ C99INIT(init, uart2_init),
+ C99INIT(cleanup, uart2_cleanup),
+ C99INIT(setBaudrate, uart2_setbaudrate),
+ C99INIT(setParity, uart2_setparity),
+ C99INIT(txStart, uart2_enabletxirq),
+ C99INIT(txSending, tx_sending),
+};
+#endif // AVR_HAS_UART2
+
+#if AVR_HAS_UART3
+static const struct SerialHardwareVT UART3_VT =
+{
+ C99INIT(init, uart3_init),
+ C99INIT(cleanup, uart3_cleanup),
+ C99INIT(setBaudrate, uart3_setbaudrate),
+ C99INIT(setParity, uart3_setparity),
+ C99INIT(txStart, uart3_enabletxirq),
+ C99INIT(txSending, tx_sending),
+};
+#endif // AVR_HAS_UART3
+
+static const struct SerialHardwareVT SPI_VT =
+{
+ C99INIT(init, spi_init),
+ C99INIT(cleanup, spi_cleanup),
+ C99INIT(setBaudrate, spi_setbaudrate),
+ C99INIT(setParity, spi_setparity),
+ C99INIT(txStart, spi_starttx),
+ C99INIT(txSending, tx_sending),
+};
+
+static struct AvrSerial UARTDescs[SER_CNT] =
+{
+ {
+ C99INIT(hw, /**/) {
+ C99INIT(table, &UART0_VT),
+ C99INIT(txbuffer, uart0_txbuffer),
+ C99INIT(rxbuffer, uart0_rxbuffer),
+ C99INIT(txbuffer_size, sizeof(uart0_txbuffer)),
+ C99INIT(rxbuffer_size, sizeof(uart0_rxbuffer)),
+ },
+ C99INIT(sending, false),
+ },
+#if AVR_HAS_UART1
+ {
+ C99INIT(hw, /**/) {
+ C99INIT(table, &UART1_VT),
+ C99INIT(txbuffer, uart1_txbuffer),
+ C99INIT(rxbuffer, uart1_rxbuffer),
+ C99INIT(txbuffer_size, sizeof(uart1_txbuffer)),
+ C99INIT(rxbuffer_size, sizeof(uart1_rxbuffer)),
+ },
+ C99INIT(sending, false),
+ },
+#endif
+#if AVR_HAS_UART2
+ {
+ C99INIT(hw, /**/) {
+ C99INIT(table, &UART2_VT),
+ C99INIT(txbuffer, uart2_txbuffer),
+ C99INIT(rxbuffer, uart2_rxbuffer),
+ C99INIT(txbuffer_size, sizeof(uart2_txbuffer)),
+ C99INIT(rxbuffer_size, sizeof(uart2_rxbuffer)),
+ },
+ C99INIT(sending, false),
+ },
+#endif
+#if AVR_HAS_UART3
+ {
+ C99INIT(hw, /**/) {
+ C99INIT(table, &UART3_VT),
+ C99INIT(txbuffer, uart3_txbuffer),
+ C99INIT(rxbuffer, uart3_rxbuffer),
+ C99INIT(txbuffer_size, sizeof(uart3_txbuffer)),
+ C99INIT(rxbuffer_size, sizeof(uart3_rxbuffer)),
+ },
+ C99INIT(sending, false),
+ },
+#endif
+ {
+ C99INIT(hw, /**/) {
+ C99INIT(table, &SPI_VT),
+ C99INIT(txbuffer, spi_txbuffer),
+ C99INIT(rxbuffer, spi_rxbuffer),
+ C99INIT(txbuffer_size, sizeof(spi_txbuffer)),
+ C99INIT(rxbuffer_size, sizeof(spi_rxbuffer)),
+ },
+ C99INIT(sending, false),
+ }
+};
+
+struct SerialHardware *ser_hw_getdesc(int unit)
+{
+ ASSERT(unit < SER_CNT);
+ return &UARTDescs[unit].hw;
+}
+
+
+/*
+ * Interrupt handlers
+ */
+
+#if CONFIG_SER_HWHANDSHAKE
+
+/// This interrupt is triggered when the CTS line goes high
+DECLARE_ISR(SIG_CTS)
+{
+ // Re-enable UDR empty interrupt and TX, then disable CTS interrupt
+ UCSR0B = BV(BIT_RXCIE0) | BV(BIT_UDRIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0);
+ EIMSK &= ~EIMSKF_CTS;
+}
+
+#endif // CONFIG_SER_HWHANDSHAKE
+
+
+/**
+ * Serial 0 TX interrupt handler
+ */
+DECLARE_ISR(USART0_UDRE_vect)
+{
+ SER_STROBE_ON;
+
+ struct FIFOBuffer * const txfifo = &ser_handles[SER_UART0]->txfifo;
+
+ if (fifo_isempty(txfifo))
+ {
+ SER_UART0_BUS_TXEND;
+#ifndef SER_UART0_BUS_TXOFF
+ UARTDescs[SER_UART0].sending = false;
+#endif
+ }
+#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103
+ else if (!IS_CTS_ON)
+ {
+ // Disable rx interrupt and tx, enable CTS interrupt
+ // UNTESTED
+ UCSR0B = BV(BIT_RXCIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0);
+ EIFR |= EIMSKF_CTS;
+ EIMSK |= EIMSKF_CTS;
+ }
+#endif
+ else
+ {
+ char c = fifo_pop(txfifo);
+ SER_UART0_BUS_TXCHAR(c);
+ }
+
+ SER_STROBE_OFF;
+}
+
+#ifdef SER_UART0_BUS_TXOFF
+/**
+ * Serial port 0 TX complete interrupt handler.
+ *
+ * This IRQ is usually disabled. The UDR-empty interrupt
+ * enables it when there's no more data to transmit.
+ * We need to wait until the last character has been
+ * transmitted before switching the 485 transceiver to
+ * receive mode.
+ *
+ * The txfifo might have been refilled by putchar() while
+ * we were waiting for the transmission complete interrupt.
+ * In this case, we must restart the UDR empty interrupt,
+ * otherwise we'd stop the serial port with some data
+ * still pending in the buffer.
+ */
+DECLARE_ISR(USART0_TX_vect)
+{
+ SER_STROBE_ON;
+
+ struct FIFOBuffer * const txfifo = &ser_handles[SER_UART0]->txfifo;
+ if (fifo_isempty(txfifo))
+ {
+ SER_UART0_BUS_TXOFF;
+ UARTDescs[SER_UART0].sending = false;
+ }
+ else
+ UCSR0B = BV(BIT_RXCIE0) | BV(BIT_UDRIE0) | BV(BIT_RXEN0) | BV(BIT_TXEN0);
+
+ SER_STROBE_OFF;
+}
+#endif /* SER_UART0_BUS_TXOFF */
+
+
+#if AVR_HAS_UART1
+
+/**
+ * Serial 1 TX interrupt handler
+ */
+DECLARE_ISR(USART1_UDRE_vect)
+{
+ SER_STROBE_ON;
+
+ struct FIFOBuffer * const txfifo = &ser_handles[SER_UART1]->txfifo;
+
+ if (fifo_isempty(txfifo))
+ {
+ SER_UART1_BUS_TXEND;
+#ifndef SER_UART1_BUS_TXOFF
+ UARTDescs[SER_UART1].sending = false;
+#endif
+ }
+#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA103
+ else if (!IS_CTS_ON)
+ {
+ // Disable rx interrupt and tx, enable CTS interrupt
+ // UNTESTED
+ UCSR1B = BV(BIT_RXCIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1);
+ EIFR |= EIMSKF_CTS;
+ EIMSK |= EIMSKF_CTS;
+ }
+#endif
+ else
+ {
+ char c = fifo_pop(txfifo);
+ SER_UART1_BUS_TXCHAR(c);
+ }
+
+ SER_STROBE_OFF;
+}
+
+#ifdef SER_UART1_BUS_TXOFF
+/**
+ * Serial port 1 TX complete interrupt handler.
+ *
+ * \sa port 0 TX complete handler.
+ */
+DECLARE_ISR(USART1_TX_vect)
+{
+ SER_STROBE_ON;
+
+ struct FIFOBuffer * const txfifo = &ser_handles[SER_UART1]->txfifo;
+ if (fifo_isempty(txfifo))
+ {
+ SER_UART1_BUS_TXOFF;
+ UARTDescs[SER_UART1].sending = false;
+ }
+ else
+ UCSR1B = BV(BIT_RXCIE1) | BV(BIT_UDRIE1) | BV(BIT_RXEN1) | BV(BIT_TXEN1);
+
+ SER_STROBE_OFF;
+}
+#endif /* SER_UART1_BUS_TXOFF */
+
+#endif // AVR_HAS_UART1
+
+#if AVR_HAS_UART2
+
+/**
+ * Serial 2 TX interrupt handler
+ */
+DECLARE_ISR(USART2_UDRE_vect)
+{
+ SER_STROBE_ON;
+
+ struct FIFOBuffer * const txfifo = &ser_handles[SER_UART2]->txfifo;
+
+ if (fifo_isempty(txfifo))
+ {
+ SER_UART2_BUS_TXEND;
+#ifndef SER_UART2_BUS_TXOFF
+ UARTDescs[SER_UART2].sending = false;
+#endif
+ }
+ else
+ {
+ char c = fifo_pop(txfifo);
+ SER_UART2_BUS_TXCHAR(c);
+ }
+
+ SER_STROBE_OFF;
+}
+
+#ifdef SER_UART2_BUS_TXOFF
+/**
+ * Serial port 2 TX complete interrupt handler.
+ *
+ * \sa port 0 TX complete handler.
+ */
+DECLARE_ISR(USART2_TX_vect)
+{
+ SER_STROBE_ON;
+
+ struct FIFOBuffer * const txfifo = &ser_handles[SER_UART2]->txfifo;
+ if (fifo_isempty(txfifo))
+ {
+ SER_UART2_BUS_TXOFF;
+ UARTDescs[SER_UART2].sending = false;
+ }
+ else
+ UCSR2B = BV(BIT_RXCIE2) | BV(BIT_UDRIE2) | BV(BIT_RXEN2) | BV(BIT_TXEN2);
+
+ SER_STROBE_OFF;
+}
+#endif /* SER_UART2_BUS_TXOFF */
+
+#endif // AVR_HAS_UART2
+
+#if AVR_HAS_UART3
+
+/**
+ * Serial 3 TX interrupt handler
+ */
+DECLARE_ISR(USART3_UDRE_vect)
+{
+ SER_STROBE_ON;
+
+ struct FIFOBuffer * const txfifo = &ser_handles[SER_UART3]->txfifo;
+
+ if (fifo_isempty(txfifo))
+ {
+ SER_UART3_BUS_TXEND;
+#ifndef SER_UART3_BUS_TXOFF
+ UARTDescs[SER_UART3].sending = false;
+#endif
+ }
+ else
+ {
+ char c = fifo_pop(txfifo);
+ SER_UART3_BUS_TXCHAR(c);
+ }
+
+ SER_STROBE_OFF;
+}
+
+#ifdef SER_UART3_BUS_TXOFF
+/**
+ * Serial port 3 TX complete interrupt handler.
+ *
+ * \sa port 0 TX complete handler.
+ */
+DECLARE_ISR(USART3_TX_vect)
+{
+ SER_STROBE_ON;
+
+ struct FIFOBuffer * const txfifo = &ser_handles[SER_UART3]->txfifo;
+ if (fifo_isempty(txfifo))
+ {
+ SER_UART3_BUS_TXOFF;
+ UARTDescs[SER_UART3].sending = false;
+ }
+ else
+ UCSR3B = BV(BIT_RXCIE3) | BV(BIT_UDRIE3) | BV(BIT_RXEN3) | BV(BIT_TXEN3);
+
+ SER_STROBE_OFF;
+}
+#endif /* SER_UART3_BUS_TXOFF */
+
+#endif // AVR_HAS_UART3
+
+
+/**
+ * Serial 0 RX complete interrupt handler.
+ *
+ * This handler is interruptible.
+ * Interrupt are reenabled as soon as recv complete interrupt is
+ * disabled. Using INTERRUPT() is troublesome when the serial
+ * is heavily loaded, because an interrupt could be retriggered
+ * when executing the handler prologue before RXCIE is disabled.
+ *
+ * \note The code that re-enables interrupts is commented out
+ * because in some nasty cases the interrupt is retriggered.
+ * This is probably due to the RXC flag being set before
+ * RXCIE is cleared. Unfortunately the RXC flag is read-only
+ * and can't be cleared by code.
+ */
+DECLARE_ISR(USART0_RX_vect)
+{
+ SER_STROBE_ON;
+
+ /* Disable Recv complete IRQ */
+ //UCSR0B &= ~BV(RXCIE);
+ //IRQ_ENABLE;
+
+ /* Should be read before UDR */
+ ser_handles[SER_UART0]->status |= UCSR0A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
+
+ /* To clear the RXC flag we must _always_ read the UDR even when we're
+ * not going to accept the incoming data, otherwise a new interrupt
+ * will occur once the handler terminates.
+ */
+ char c = UDR0;
+ struct FIFOBuffer * const rxfifo = &ser_handles[SER_UART0]->rxfifo;
+
+ if (fifo_isfull(rxfifo))
+ ser_handles[SER_UART0]->status |= SERRF_RXFIFOOVERRUN;
+ else
+ {
+ fifo_push(rxfifo, c);
+#if CONFIG_SER_HWHANDSHAKE
+ if (fifo_isfull(rxfifo))
+ RTS_OFF;
+#endif
+ }
+
+ /* Reenable receive complete int */
+ //IRQ_DISABLE;
+ //UCSR0B |= BV(RXCIE);
+
+ SER_STROBE_OFF;
+}
+
+
+#if AVR_HAS_UART1
+
+/**
+ * Serial 1 RX complete interrupt handler.
+ *
+ * This handler is interruptible.
+ * Interrupt are reenabled as soon as recv complete interrupt is
+ * disabled. Using INTERRUPT() is troublesome when the serial
+ * is heavily loaded, because an interrupt could be retriggered
+ * when executing the handler prologue before RXCIE is disabled.
+ *
+ * \see DECLARE_ISR(USART1_RX_vect)
+ */
+DECLARE_ISR(USART1_RX_vect)
+{
+ SER_STROBE_ON;
+
+ /* Disable Recv complete IRQ */
+ //UCSR1B &= ~BV(RXCIE);
+ //IRQ_ENABLE;
+
+ /* Should be read before UDR */
+ ser_handles[SER_UART1]->status |= UCSR1A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
+
+ /* To avoid an IRQ storm, we must _always_ read the UDR even when we're
+ * not going to accept the incoming data
+ */
+ char c = UDR1;
+ struct FIFOBuffer * const rxfifo = &ser_handles[SER_UART1]->rxfifo;
+ //ASSERT_VALID_FIFO(rxfifo);
+
+ if (UNLIKELY(fifo_isfull(rxfifo)))
+ ser_handles[SER_UART1]->status |= SERRF_RXFIFOOVERRUN;
+ else
+ {
+ fifo_push(rxfifo, c);
+#if CONFIG_SER_HWHANDSHAKE
+ if (fifo_isfull(rxfifo))
+ RTS_OFF;
+#endif
+ }
+ /* Re-enable receive complete int */
+ //IRQ_DISABLE;
+ //UCSR1B |= BV(RXCIE);
+
+ SER_STROBE_OFF;
+}
+
+#endif // AVR_HAS_UART1
+
+#if AVR_HAS_UART2
+
+/**
+ * Serial 2 RX complete interrupt handler.
+ *
+ * This handler is interruptible.
+ * Interrupt are reenabled as soon as recv complete interrupt is
+ * disabled. Using INTERRUPT() is troublesome when the serial
+ * is heavily loaded, because an interrupt could be retriggered
+ * when executing the handler prologue before RXCIE is disabled.
+ *
+ * \see DECLARE_ISR(USART2_RX_vect)
+ */
+DECLARE_ISR(USART2_RX_vect)
+{
+ SER_STROBE_ON;
+
+ /* Disable Recv complete IRQ */
+ //UCSR1B &= ~BV(RXCIE);
+ //IRQ_ENABLE;
+
+ /* Should be read before UDR */
+ ser_handles[SER_UART2]->status |= UCSR2A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
+
+ /* To avoid an IRQ storm, we must _always_ read the UDR even when we're
+ * not going to accept the incoming data
+ */
+ char c = UDR2;
+ struct FIFOBuffer * const rxfifo = &ser_handles[SER_UART2]->rxfifo;
+ //ASSERT_VALID_FIFO(rxfifo);
+
+ if (UNLIKELY(fifo_isfull(rxfifo)))
+ ser_handles[SER_UART2]->status |= SERRF_RXFIFOOVERRUN;
+ else
+ {
+ fifo_push(rxfifo, c);
+#if CONFIG_SER_HWHANDSHAKE
+ if (fifo_isfull(rxfifo))
+ RTS_OFF;
+#endif
+ }
+ /* Re-enable receive complete int */
+ //IRQ_DISABLE;
+ //UCSR1B |= BV(RXCIE);
+
+ SER_STROBE_OFF;
+}
+
+#endif // AVR_HAS_UART2
+
+#if AVR_HAS_UART3
+
+/**
+ * Serial 3 RX complete interrupt handler.
+ *
+ * This handler is interruptible.
+ * Interrupt are reenabled as soon as recv complete interrupt is
+ * disabled. Using INTERRUPT() is troublesome when the serial
+ * is heavily loaded, because an interrupt could be retriggered
+ * when executing the handler prologue before RXCIE is disabled.
+ *
+ * \see DECLARE_ISR(USART3_RX_vect)
+ */
+DECLARE_ISR(USART3_RX_vect)
+{
+ SER_STROBE_ON;
+
+ /* Disable Recv complete IRQ */
+ //UCSR1B &= ~BV(RXCIE);
+ //IRQ_ENABLE;
+
+ /* Should be read before UDR */
+ ser_handles[SER_UART3]->status |= UCSR3A & (SERRF_RXSROVERRUN | SERRF_FRAMEERROR);
+
+ /* To avoid an IRQ storm, we must _always_ read the UDR even when we're
+ * not going to accept the incoming data
+ */
+ char c = UDR3;
+ struct FIFOBuffer * const rxfifo = &ser_handles[SER_UART3]->rxfifo;
+ //ASSERT_VALID_FIFO(rxfifo);
+
+ if (UNLIKELY(fifo_isfull(rxfifo)))
+ ser_handles[SER_UART3]->status |= SERRF_RXFIFOOVERRUN;
+ else
+ {
+ fifo_push(rxfifo, c);
+#if CONFIG_SER_HWHANDSHAKE
+ if (fifo_isfull(rxfifo))
+ RTS_OFF;
+#endif
+ }
+ /* Re-enable receive complete int */
+ //IRQ_DISABLE;
+ //UCSR1B |= BV(RXCIE);
+
+ SER_STROBE_OFF;
+}
+
+#endif // AVR_HAS_UART3
+
+
+/**
+ * SPI interrupt handler
+ */
+DECLARE_ISR(SPI_STC_vect)
+{
+ SER_STROBE_ON;
+
+ /* Read incoming byte. */
+ if (!fifo_isfull(&ser_handles[SER_SPI]->rxfifo))
+ fifo_push(&ser_handles[SER_SPI]->rxfifo, SPDR);
+ /*
+ * FIXME
+ else
+ ser_handles[SER_SPI]->status |= SERRF_RXFIFOOVERRUN;
+ */
+
+ /* Send */
+ if (!fifo_isempty(&ser_handles[SER_SPI]->txfifo))
+ SPDR = fifo_pop(&ser_handles[SER_SPI]->txfifo);
+ else
+ UARTDescs[SER_SPI].sending = false;
+
+ SER_STROBE_OFF;
+}
--- /dev/null
+/**
+ * \file
+ * <!--
+ * This file is part of BeRTOS.
+ *
+ * Bertos is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * As a special exception, you may use this file as part of a free software
+ * library without restriction. Specifically, if other files instantiate
+ * templates or use macros or inline functions from this file, or you compile
+ * this file and link it with other files to produce an executable, this
+ * file does not by itself cause the resulting executable to be covered by
+ * the GNU General Public License. This exception does not however
+ * invalidate any other reasons why the executable file might be covered by
+ * the GNU General Public License.
+ *
+ * Copyright 2007, 2010 Develer S.r.l. (http://www.develer.com/)
+ *
+ * -->
+ *
+ *
+ * \author Daniele Basile <asterix@develer.com>
+ * \author Luca Ottaviano <lottaviano@develer.com>
+ *
+ * \brief Low-level serial module for AVR (interface).
+ *
+ */
+
+#ifndef DRV_SER_AVR_H
+#define DRV_SER_AVR_H
+
+#include <cfg/macros.h> /* BV() */
+#include <cfg/compiler.h> /* uint32_t */
+
+typedef uint8_t serstatus_t;
+
+/* Software errors */
+#define SERRF_RXFIFOOVERRUN BV(0) /**< Rx FIFO buffer overrun */
+#define SERRF_RXTIMEOUT BV(5) /**< Receive timeout */
+#define SERRF_TXTIMEOUT BV(6) /**< Transmit timeout */
+
+/*
+* Hardware errors.
+* These flags map directly to the AVR UART Status Register (USR).
+*/
+#define SERRF_RXSROVERRUN BV(3) /**< Rx shift register overrun */
+#define SERRF_FRAMEERROR BV(4) /**< Stop bit missing */
+#define SERRF_PARITYERROR BV(7) /**< Parity error */
+#define SERRF_NOISEERROR 0 /**< Unsupported */
+
+
+/**
+ * SPI clock polarity.
+ *
+ * $WIZ$ ser_spi_pol = "SPI_NORMAL_LOW", "SPI_NORMAL_HIGH"
+ * }
+ */
+#define SPI_NORMAL_LOW 0
+#define SPI_NORMAL_HIGH 1
+
+/**
+ * SPI clock phase.
+ *
+ * $WIZ$ ser_spi_phase = "SPI_SAMPLE_ON_FIRST_EDGE", "SPI_SAMPLE_ON_SECOND_EDGE"
+ * }
+ */
+#define SPI_SAMPLE_ON_FIRST_EDGE 0
+#define SPI_SAMPLE_ON_SECOND_EDGE 1
+
+/**
+ * \name Serial hw numbers
+ *
+ * \{
+ */
+enum
+{
+#if CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
+ SER_UART0,
+ SER_UART1,
+ SER_UART2,
+ SER_UART3,
+ SER_SPI,
+#elif CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA1281
+ SER_UART0,
+ SER_UART1,
+ SER_SPI,
+#elif CPU_AVR_ATMEGA103 || CPU_AVR_ATMEGA8 || CPU_AVR_ATMEGA32 || CPU_AVR_ATMEGA168 \
+ || CPU_AVR_ATMEGA328P
+ SER_UART0,
+ SER_SPI,
+#else
+ #error unknown architecture
+#endif
+ SER_CNT /**< Number of serial ports */
+};
+/*\}*/
+
+#endif /* DRV_SER_AVR_H */