Sneak Peek: Alice 3.0

A new way to teach programming

Concepts

Approaching programming with tools designed for use by professional engineers presents a steep
learning curve: mainstream languages present a complex syntax designed to maximize productivity
rather than for clarity. On the other end, didactic languages are often very limited in scope. Both are
unattractive for students who are looking for practical applications and quick reward.

Alice is an innovative authoring system in which you can create stories by animating characters in a
3D world. Targeted at middle and high-school students, Alice offers a powerful interaction model
based on objects and verbs.

We have tested the yet-to-be-released preview version of Alice 3.0, an ongoing ambitious rewrite of
the already well established version 2.0.

The Art of Computer Programming

Computer science is often presented to students as an abstract discipline, very close to mathematics.
While this may be scientifically more rigorous, idealized computers that only exist on paper tend to
look aseptic and ultimately boring to the average learner.

The practice of programming is quite a different discipline from its underlying theoretical
scaffolding. Software engineering studies the technical, organizational and social challenges of
writing large-scale programs.

There is yet another way to look at it: some say that creating programs is primarily a work of art. As
controversial as this statement may sound, the
all-time best selling book about computer
science is titled “The Art Of Computer
Programming”.

Be it a science, a branch of engineering or a Lekysustigetinneiers
modern expressive art, in the Internet era there
seems to be some a practical value in learning
the basics of how computers “think™.

Visual programming

Alice is an Open Source project of Carnegie
Mellon University written in Java, a modern
programming language which is popular both
in education and enterprise. This educational tool offers an innovative “low floor, high ceiling”
approach that fits a wide spectrum of computer science topics.

The basic idea is to engage students in storytelling within a three-dimensional world that can be
filled with objects and characters of all kinds. The students become the directors of a movie, by
controlling the camera and making characters perform actions and interact with each other. There's
a vast library of ready-to-use objects, creatures and human characters suitable for modern, historic

or fantasy worlds. It is also possible to create new objects by customizing one of these templates, or
starting anew from a very sophisticated object editor.

Any object in the world can be controlled by means of command verbs, such as move or turn. Verbs
are often used in conjunction with a certain number of parameters, such as “move” “forward” “10
feet”, for which reasonable defaults are provided. Any object belongs to a category, such as Dog or
Human which may know how to perform additional actions, such as bark or handshake. Students
can teach their characters to perform new actions by assembling simpler actions. For example, the
action “go to X could be assembled by “turn to X, “walk forward <distance from X>". Specific
subcategories may change the meaning of common verbs such as walk: bipeds and insects walk in
very different ways, but once the work of teaching a new verb is done, the director can just tell any
object to walk 10 feet forward without being concerned by such details.

- bunmy move up 1 meter more...
i bunny - move left 1 meter MOre...

bunmy.rightLeg turn forward — 0.25 revolutions — more...

: bunnylefileg — turn forward — 0.25 revolutions more...

‘= Do together
i : bunmy move down 1 meter more...

i bunmy.rightLeg — turn backward | 0.25 revolutions more...

: bunmyleftLeg — turn backward 0.25 revalutions — | more... -

|-/ Do together
:: bunmy move up — 1 meter more... -

i bunny — move right 2 17 17 3 = fmore:. =

: bunmyrightleg — turn forward — 0.25 revolutions more...

bunny.lefiLey turn forward 0.25 revolutions more...

:[=/Do together
i bunny -~ move down 1 meter more...

: bunmyrightleg — turn backward 0.25 revolutions more... -

i bunny.lefiLeg turn backward 0.25 revolutions more...

Underlying programming paradigm

-[=/Do together

bunmy move up 1 meter more...

*bunny — | mave. len — |1 meter — | more— This method of interaction has a very close
TS RS relationship with the underlying Object-Oriented
ey Bremd_Dopronne o Programming paradigm used by Java. In OOP

jargon, objects are called instances, object

categories are classes, and the verbs used to
perform actions are methods or member functions. Needless to say, students of CS require time to
grasp these abstractions. Mapping them to real-world concepts helps clear the confusion. This is a
transposition, not oversimplified analogy which detracts from correctness. All the other advanced
aspects of modern Object Oriented Programming are also present: the ability to define new verbs in
categories is called specialization, redefining existing verbs unleashes the concepts of type-based
polymorphism, a technique used for information-hiding. Applying all this to knights and dragons
helps students contextualize these abstractions and learn how to correctly apply them to solve
problems.

i bunmy.lefiLeg turn forward 0.25 revolutions more...

Building the scene

On a higher scale, the process of creating a story involves placing command verbs for the various
actors and for the camera in a meaningful sequence.

You can even place multiple actions in :
a “do together” block to perform them . S—— e

in parallel. This technique offers a -
wonderful opportunity to gently

During: <Mons>
End: leeSkater.go sohd

introduce students to some of the — w=— 4 R
; : e & e 4
hardest topics of computer science: by tum ; e
. . . sky roll . o e |
concurrent execution, synchronization shy resie W e
. . . sky sy | pr—
and inter-process communication. P e e e
sky play sound Do In order
sky move to Do tagether
« .. . sy move: towsed lceSkater. Thighl. roll right 0.1 revolitions aess=-1 second mare...
iceSkater. Thighl. tumn backward 002 rovoktions more...
Competition o o e s
. . sy B b P lceSkater. Thighl. roll left 0.1 revoltions sesss - gecond more..
The ldea Of maklng young sky poiol ¢ e:ﬁuln.l‘m turn forward 0.04 revolions mare..
. sky set point of view Lo together
programmers control a character has its sty set pore e e B

shy stand up .|| Doinorder Dotogether WElse Loop While Forallin order For all logether Wait print

roots in the ancient educational
programming language LOGO created
in 1967. With just one fixed actor to play with, a turtle capable of drawing lines on its trail, LOGO
would let students create geometrical figures on a 2-dimensional world.

Modern reinterpretations of the original LOGO concept include Turtle Art and Scratch, both of
which offer a simple visual language based on snap-together blocks, although the interaction
happens in a simpler, 2-dimensional world. Scratch also offers multiple actors with custom skins.

Reception

The website claims that Alice is being used in 10 to 15% of high education institutions, as well as a
number of middle and high-schools, but fails to specify the details of how these suspiciously high
figures were obtained.

Nevertheless, a strong online community seems to be inhabiting the forums, offering advice and
publishing materials of all sorts. A much missed “web gallery” application would make these jewels
easier to discover.

Several printed books are available, including Learning to Program with Alice, which is
accompanied by abundant online teaching materials and exercises, whose redistribution is
unfortunately forbidden and restricted by an instructor password.

Giving the software out for free and selling the book was probably part of Alice's business model
for version 2.0. That is, before Sun came into play last year offering direct financial support for the
development of version 3.0. Sun, evidently has a direct interest in fostering the adoption of Java
grow within educational institutions, which by itself should guarantee Alice's future growth and
prosperity.

Pros and Cons

With such a huge increase in complexity with respect to
traditional “third person” programming environments, one
would expect Alice to go far beyond mere
teaching of computer science. Sadly, it falls
short of being a tool that anyone but a
aspiring programmer would want to use.
Artists, choreographers and film directors
would find the work-flow excessively
“object oriented” rather than “expression
oriented”. Alice's impressive library
contains large quantities of unimaginative,
assembly-line constructed object sets. The
Alice mascot rendered in modern-manga style was
supposed to look smart, but results instead somewhat
pathetic. A quick glance at the web site is enough to get
the impression of a struggle to boost the “coolness”
factor of a product that was clearly built from the
ground up by engineers.

Another frustrating aspect is slowness of the
rendering engine, which may in part be justified

by the beta status of the version we have evaluated.
On the other hand, the overall stability was very
satisfactory, which is a manifestation of the high-
quality engineering process typical of Java shops.

Conclusions

All considered, Alice is a sophisticated tool with a rich feature set. One rarely sees a product of this
depth and vastness in the small pond of free educational tools.

If you view computation as a tool accessory to teaching other subjects, and especially for teaching
about story telling, Alice is probably an elephant in the classroom. But if you're looking for an
environment to help introduce middle and high-school students to programming, Alice is certainly
worth adopting.

About the author
Bernie Innocenti
Infrastructure coordinator, Sugar Labs

bernie @codewiz.org

mailto:bernie@codewiz.org

	Concepts
	The Art of Computer Programming
	Visual programming
	Underlying programming paradigm
	Building the scene
	“Competition”
	Reception
	Pros and Cons
	Conclusions
	About the author

